Skip to main content Accessibility help
×
  • Cited by 78
Publisher:
Cambridge University Press
Online publication date:
September 2015
Print publication year:
2015
Online ISBN:
9781316227619

Book description

During the past two decades there has been active interplay between geometric measure theory and Fourier analysis. This book describes part of that development, concentrating on the relationship between the Fourier transform and Hausdorff dimension. The main topics concern applications of the Fourier transform to geometric problems involving Hausdorff dimension, such as Marstrand type projection theorems and Falconer's distance set problem, and the role of Hausdorff dimension in modern Fourier analysis, especially in Kakeya methods and Fourier restriction phenomena. The discussion includes both classical results and recent developments in the area. The author emphasises partial results of important open problems, for example, Falconer's distance set conjecture, the Kakeya conjecture and the Fourier restriction conjecture. Essentially self-contained, this book is suitable for graduate students and researchers in mathematics.

Reviews

'Mattila deserves kudos for having written an excellent text for the community of graduate students and research mathematicians with an analytic bent, one that exposes in considerable detail a particularly rich seam of mathematics at the interface between harmonic analysis and geometric measure theory in Euclidean space … Libraries should be encouraged to buy their copies in haste.'

Tushar Das Source: MAA Reviews

'In addition to a clear, direct writing style, one of the main virtues of this book is the bibliography. (There is a three-page two-column index of authors cited.) Though the book was published in 2015, the author has managed to incorporate references and techniques from many articles that were published as late as 2014. Thus this book is still up to date a few years after its publication. This is an excellent place to begin a study of the interplay between dimension and Fourier transforms.'

Benjamin Steinhurst Source: MathSciNet

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
B., Barany and M., Rams [2014] Dimension of slices of Sierpinski-like carpets, J. Fractal Geom. 1, 273–294.
B., Barceló [1985] On the restriction of the Fourier transform to a conical surface, Trans. Amer. Math. Soc. 292, 321–333.
J. A., Barceló, J., Bennett, A., Carbery and K. M., Rogers [2011] On the dimension of divergence sets of dispersive equations, Math. Ann. 349, 599–622.
J. A., Barceló, J., Bennett, A., Carbery, A., Ruiz and M. C., Vilela [2007] Some special solutions of the Schrödinger equation, Indiana Univ. Math. J. 56, 1581–1593.
M., Bateman [2009] Kakeya sets and directional maximal operators in the plane, Duke Math. J. 147, 55–77.
M., Bateman and N. H., Katz [2008] Kakeya sets in Cantor directions, Math. Res. Lett. 15, 73–81.
M., Bateman and A., Volberg [2010] An estimate from below for the Buffon needle probability of the four-corner Cantor set, Math. Res. Lett. 17, 959–967.
W., Beckner, A., Carbery, S., Semmes and F., Soria [1989] A note on restriction of the Fourier transform to spheres, Bull. London Math. Soc. 21, 394–398.
I., Benjamini and Y., Peres [1991] On the Hausdorff dimension of fibres, Israel J. Math. 74, 267–279.
J., Bennett [2014] Aspects of multilinear harmonic analysis related to transversality, Harmonic analysis and partial differential equations, Contemporary Math. 612, 1–28.
J., Bennett, T., Carbery and T., Tao [2006] On the multilinear restriction and Kakeya conjectures, Acta Math. 196, 261–302.
J., Bennett and K. M., Rogers [2012] On the size of divergence sets for the Schrödinger equation with radial data, Indiana Univ. Math. J. 61, 1–13.
J., Bennett and A., Vargas [2003] Randomised circular means of Fourier transforms of measures, Proc. Amer. Math. Soc. 131, 117–127.
M., Bennett, A., Iosevich and K., Taylor [2014] Finite chains inside thin subsets of Rd, arXiv:1409.2581.
A. S., Besicovitch [1919] Sur deux questions d'intégrabilité des fonctions, J. Soc. Phys- Math. (Perm) 2, 105–123.
A. S., Besicovitch [1928] On Kakeya's problem and a similar one, Math. Zeitschrift 27, 312–320.
A. S., Besicovitch [1964] On fundamental geometric properties of plane line–sets, J. London Math. Soc. 39, 441–448.
D., Betsakos [2004] Symmetrization, symmetric stable processes, and Riesz capacities, Trans. Amer. Math. Soc. 356, 735–755.
C. J., Bishop and Y., Peres [2016] Fractal Sets in Probability and Analysis, Cambridge University Press.
C., Bluhm [1996] Random recursive construction of Salem sets, Ark. Mat. 34, 51–63.
C., Bluhm [1998] On a theorem of Kaufman: Cantor-type construction of linear fractal Salem sets, Ark. Mat. 36, 307–316.
M., Bond, I., Łaba and A., Volberg [2014] Buffon's needle estimates for rational product Cantor sets, Amer. J. Math. 136, 357–391.
M., Bond, I., Łaba and J., Zhai [2013] Quantitative visibility estimates for unrectifiable sets in the plane, to appear in Trans. Amer. Math. Soc., arXiv:1306.5469.
M., Bond and A., Volberg [2010] Buffon needle lands in ε-neighborhood of a 1- dimensional Sierpinski gasket with probability at most j log εjc, C. R. Math. Acad. Sci. Paris 348, 653–656.
M., Bond [2011] Circular Favard length of the four-corner Cantor set, J. Geom. Anal. 21, 40–55.
M., Bond [2012] Buffon's needle landing near Besicovitch irregular self-similar sets, Indiana Univ. Math. J. 61, 2085–2019.
J., Bourgain [1986] Averages in the plane over convex curves and maximal operators, J. Anal. Math. 47, 69–85.
J., Bourgain [1991a] Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1, 147–187.
J., Bourgain [1991b] Lp-estimates for oscillatory integrals in several variables, Geom. Funct. Anal. 1, 321–374.
J., Bourgain [1993] On the distribution of Dirichlet sums, J. Anal. Math. 60, 21–32.
J., Bourgain [1994] Hausdorff dimension and distance sets, Israel J. Math. 87, 193–201.
J., Bourgain [1995] Some new estimates on oscillatory integrals, in Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton University Press, 83–112.
J., Bourgain[1999] On the dimension of Kakeya sets and related maximal inequalities, Geom. Funct. Anal. 9, 256–282.
J., Bourgain [2003] On the Erdős–Volkmann and Katz–Tao ring conjectures, Geom. Funct. Anal. 13, 334–365.
J., Bourgain [2010] The discretized sum-product and projection theorems, J. Anal. Math. 112, 193–236.
J., Bourgain [2013] On the Schrödinger maximal function in higher dimension, Proc. Steklov Inst. Math. 280, 46–60.
J., Bourgain and L., Guth [2011] Bounds on oscillatory integral operators based on multilinear estimates, Geom. Funct. Anal. 21, 1239–1235.
J., Bourgain, N. H., Katz and T., Tao [2004] A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14, 27–57.
G., Brown and W., Moran [1974] On orthogonality for Riesz products, Proc. Cambridge Philos. Soc. 76, 173–181.
A. M., Bruckner, J. B., Bruckner and B. S., Thomson [1997] Real Analysis, Prentice Hall.
A., Carbery [1992] Restriction implies Bochner–Riesz for paraboloids, Math. Proc. Cambridge Philos. Soc. 111, 525–529.
A., Carbery [2004] A multilinear generalisation of the Cauchy-Schwarz inequality, Proc. Amer. Math. Soc. 132, 3141–3152.
A., Carbery [2009] Large sets with limited tube occupancy, J. Lond. Math. Soc. (2) 79, 529–543.
A., Carbery, F., Soria and A., Vargas [2007] Localisation and weighted inequalities for spherical Fourier means, J. Anal. Math. 103, 133–156.
A., Carbery and S. I., Valdimarsson [2013] The endpoint multilinear Kakeya theorem via the Borsuk–Ulam theorem, J. Funct. Anal. 264, 1643–1663.
L., Carleson [1967] Selected Problems on Exceptional Sets, Van Nostrand.
L., Carleson [1980] Some analytic problems related to statistical mechanics, in Euclidean Harmonic Analysis, Lecture Notes in Math. 779, Springer-Verlag, 5–45.
L., Carleson and P., Sjölin [1972] Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44, 287–299.
V., Chan, I., Łaba and M., Pramanik [2013] Finite configurations in sparse sets, to appear in J. Anal. Math., arXiv:1307.1174.
J., Chapman, M. B., Erdoğan, D., Hart, A., Iosevich and D., Koh [2012] Pinned distance sets, k-simplices,Wolff 's exponent in finite fields and sum-product estimates, Math. Z. 271, 63–93.
X., Chen [2014a] Sets of Salem type and sharpness of the L2-Fourier restriction theorem, to appear in Trans. Amer. Math. Soc., arXiv:1305.5584.
X., Chen [2014b] A Fourier restriction theorem based on convolution powers, Proc. Amer. Math. Soc. 142, 3897–3901.
M., Christ [1984] Estimates for the k-plane tranforms, Indiana Univ. Math. J. 33, 891–910.
M., Christ, J., Duoandikoetxea and J. L. Rubio de, Francia [1986] Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations, Duke Math. J. 53, 189–209.
A., Córdoba [1977] The Kakeya maximal function and the spherical summation of multipliers, Amer. J. Math. 99, 1–22.
B. E. J., Dahlberg and C. E., Kenig [1982] A note on the almost everywhere behavior of solutions to the Schrödinger equation, in Harmonic Analysis, Lecture Notes in Math. 908, Springer-Verlag, 205–209.
G., David and S., Semmes [1993] Analysis of and on Uniformly Rectifiable Sets, Surveys and Monographs 38, Amer. Math. Soc.
R. O., Davies [1952a] On accessibility of plane sets and differentation of functions of two real variables, Proc. Cambridge Philos. Soc. 48, 215–232.
R. O., Davies [1952b] Subsets of finite measure in analytic sets, Indag. Math. 14, 488–489.
R. O., Davies [1971] Some remarks on the Kakeya problem, Proc. Cambridge Philos. Soc. 69, 417–421.
C., Demeter [2012] L2 bounds for a Kakeya type maximal operator in ℝ3, Bull. London Math. Soc. 44, 716–728.
S., Dendrinos and D., Müller [2013] Uniform estimates for the local restriction of the Fourier transform to curves, Trans. Amer.Math. Soc. 365, 3477–3492.
C., Donoven and K.J., Falconer [2014] Codimension formulae for the intersection of fractal subsets of Cantor spaces, arXiv:1409.8070.
S.W., Drury [1983] Lp estimates for the X-ray transform, Illinois J. Math. 27, 125–129.
J., Duoandikoetxea [2001] Fourier Analysis, Graduate Studies in Mathematics Volume 29, American Mathematical Society.
Z., Dvir [2009] On the size of Kakeya sets in finite fields, J. Amer. Math. Soc. 22, 1093–1097.
Z., Dvir and A., Wigderson [2011] Kakeya sets, new mergers, and old extractors, SIAM J. Comput. 40, 778–792.
G. A., Edgar and C., Miller [2003] Borel subrings of the reals, Proc. Amer. Math. Soc. 131, 1121–1129.
F., Ekström, T., Persson, J., Schmeling [2015] On the Fourier dimension and a modification, to appear in J. Fractal Geom., arXiv:1406.1480.
F., Ekström [2014] The Fourier dimension is not finitely stable, arXiv:1410.3420.
M., Elekes, T., Keleti and A., Máthé [2010] Self-similar and self-affine sets: measure of the intersection of two copies, Ergodic Theory Dynam. Systems 30, 399–440.
J. S., Ellenberg, R., Oberlin and T., Tao [2010] The Kakeya set and maximal conjectures for algebraic varieties over finite fields, Mathematika 56, 1–25.
M. B., Erdoğan [2004] A note on the Fourier transform of fractal measures, Math. Res. Lett. 11, 299–313.
M. B., Erdoğan [2005] A bilinear Fourier extension problem and applications to the distance set problem, Int. Math. Res. Not. 23, 1411–1425.
M. B., Erdoğan [2006] On Falconer's distance set conjecture, Rev. Mat. Iberoam. 22, 649–662.
M. B., Erdoğan, D., Hart and A., Iosevich [2013] Multi-parameter projection theorems with applications to sums-products and finite point configurations in the Euclidean setting, in RecentAdvances in HarmonicAnalysis and Applications, Springer Proc. Math. Stat., 25, Springer, 93–103.
M. B., Erdoğan and D. M., Oberlin [2013] Restricting Fourier transforms of measures to curves in ℝ2, Canad. Math. Bull. 56, 326–336.
P., Erdős [1939] On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61, 974–976.
P., Erdős [1940] On the smoothness properties of a family of Bernoulli convolutions, Amer. J. Math. 62, 180–186.
P., Erdős [1946] On sets of distances of n points, Amer. Math. Monthly 53, 248–250.
P., Erdős and B., Volkmann [1966] Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math. 221, 203–208.
S., Eswarathasan, A., Iosevich and K., Taylor [2011] Fourier integral operators, fractal sets, and the regular value theorem, Adv. Math. 228, 2385–2402.
S., Eswarathasan [2013] Intersections of sets and Fourier analysis, to appear in J. Anal. Math.
L. C., Evans [1998] Partial Differential Equations, Graduate Studies in Mathematics 19, Amer. Math. Soc.
L. C., Evans and R. F., Gariepy [1992] Measure Theory and Fine Properties of Functions, CRC Press.
K. J., Falconer [1980a] Continuity properties of k-plane integrals and Besicovitch sets, Math. Proc. Cambridge Philos. Soc. 87, 221–226.
K. J., Falconer [1980b] Sections of sets of zero Lebesgue measure, Mathematika 27, 90–96.
K. J., Falconer [1982] Hausdorff dimension and the exceptional set of projections, Mathematika 29, 109–115.
K. J., Falconer [1984] Rings of fractional dimension, Mathematika 31, 25–27.
K. J., Falconer [1985a] Geometry of Fractal Sets, Cambridge University Press.
K. J., Falconer [1985b] On the Hausdorff dimension of distance sets, Mathematika 32, 206–212.
K. J., Falconer [1986] Sets with prescribed projections and Nikodym sets, Proc. London Math. Soc. (3) 53, 48–64.
K. J., Falconer [1990] Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons.
K. J., Falconer [1997] Techniques in Fractal Geometry, John Wiley and Sons.
K. J., Falconer [2005] Dimensions of intersections and distance sets for polyhedral norms, Real Anal. Exchange 30, 719–726.
K. J., Falconer, J., Fraser and X., Jin [2014] Sixty years of fractal projections, arXiv:1411.3156.
K. J., Falconer and J. D., Howroyd [1996] Projection theorems for box and packing dimensions, Math. Proc. Cambridge Philos. Soc. 119, 287–295.
K. J., Falconer and J. D., Howroyd [1997] Packing dimensions of projections and dimension profiles, Math. Proc. Cambridge Philos. Soc. 121, 269–286.
K. J., Falconer and X., Jin [2014a] Exact dimensionality and projections of random self-similar measures and sets, J. London Math. Soc. 90, 388–412.
K. J., Falconer and X., Jin [2014b] Dimension conservation for self-similar sets and fractal percolation, arXiv:1409.1882.
K. J., Falconer and P., Mattila [1996] The packing dimension of projections and sections of measures, Math. Proc. Cambridge Philos. Soc. 119, 695–713.
K. J., Falconer and P., Mattila [2015] Strong Marstrand theorems and dimensions of sets formed by subsets of hyperplanes, arXiv:1503.01284.
K. J., Falconer and T., O'Neil [1999] Convolutions and the geometry of multifractal measures, Math. Nachr. 204, 61–82.
A.-H., Fan and X., Zhang [2009] Some properties of Riesz products on the ring of p-adic integers, J. Fourier Anal. Appl. 15, 521–552.
A., Farkas [2014] Projections and other images of self-similar sets with no separation condition, arXiv:1307.2841.
K., Fässler and R., Hovila [2014] Improved Hausdorff dimension estimate for vertical projections in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa.
K., Fässler and T., Orponen [2013] Constancy results for special families of projections, Math. Proc. Cambridge Philos. Soc. 154, 549–568.
K., Fässler and T., Orponen [2014] On restricted families of projections in ℝ3, Proc. London Math. Soc. (3) 109, 353–381.
H., Federer [1969] Geometric Measure Theory, Springer-Verlag.
C., Fefferman [1970] Inequalities for strongly singular convolution operators, Acta Math. 124, 9–36.
C., Fefferman [1971] The multiplier problem for the ball, Ann. of Math. (2) 94, 330–336.
A., Ferguson, J., Fraser, and T., Sahlsten [2015] Scaling scenery of (m,n) invariant measures, Adv. Math. 268, 564–602.
A., Ferguson, T., Jordan and P., Shmerkin [2010] The Hausdorff dimension of the projections of self-affine carpets, Fund. Math. 209, 193–213.
J., Fraser, E. J., Olson and J. C., Robinson [2014] Some results in support of the Kakeya Conjecture, arXiv:1407.6689.
J., Fraser, T., Orponen and T., Sahlsten [2014] On Fourier analytic properties of graphs, Int. Math. Res. Not. 10, 2730–2745.
D., Freedman and J., Pitman [1990] A measure which is singular and uniformly locally uniform, Proc. Amer. Math. Soc. 108, 371–381.
H., Furstenberg [1970] Intersections of Cantor sets and transversality of semigroups, Problems in Analysis, Sympos. Salomon Bochner, Princeton University, Princeton, N.J. 1969, Princeton University Press, 41–59.
H., Furstenberg [2008] Ergodic fractal measures and dimension conservation, Ergodic Theory Dynam. Systems 28, 405–422.
J., Garibaldi, A., Iosevich and S., Senger [2011] The Erdős distance problem, Student Mathematical Library, 56, American Mathematical Society.
L., Grafakos [2008] Classical Fourier Analysis, Springer-Verlag.
L., Grafakos [2009] Modern Fourier Analysis, Springer-Verlag.
L., Grafakos, A., Greenleaf, A., Iosevich and E., Palsson [2012] Multilinear generalized Radon transforms and point configurations, to apper in Forum Math., arXiv:1204.4429.
C. C., Graham and O. C., McGehee [1970] Essays in Commutative Harmonic Analysis, Springer-Verlag.
A., Greenleaf and A., Iosevich [2012] On triangles determined by subsets of the Euclidean plane, the associated bilinear operators and applications to discrete geometry, Anal. PDE 5, 397–409.
A., Greenleaf, A., Iosevich, B., Liu and E., Palsson [2013] A group-theoretic viewpoint on Erdos-Falconer problems and theMattila integral, to appear in Rev. Mat. Iberoam., arXiv:1306.3598.
A., Greenleaf, A., Iosevich and M., Mourgoglou [2011] On volumes determined by subsets of Euclidean space, arXiv:1110.6790.
A., Greenleaf, A., Iosevich and M., Pramanik [2014] On necklaces inside thin subsets of ℝd, arXiv:1409.2588.
M., Gromov and L., Guth [2012] Generalizations of the Kolmogorov–Barzdin embedding estimates, Duke Math. J. 161, 2549–2603.
L., Guth [2007] The width-volume inequality, Geom. Funct. Anal. 17, 1139–1179.
L., Guth [2010] The endpoint case of the Bennett–Carbery–Taomultilinear Kakeya conjecture, Acta Math. 205, 263–286.
L., Guth [2014] A restriction estimate using polynomial partitioning, arXiv:1407. 1916.
L., Guth [2015] A short proof of the multilinear Kakeya inequality, Math. Proc. Cambridge Philos. Soc. 158, 147–153.
L., Guth and N., Katz [2010] Algebraic methods in discrete analogs of the Kakeya problem, Adv. Math. 225, 2828–2839.
L., Guth and N., Katz [2015] On the Erdős distinct distance problem in the plane, Ann. of Math. (2) 181, 155–190.
M., de Guzmán [1975] Differentiation of Integrals in ℝn, Lecture Notes in Mathematics 481, Springer-Verlag.
M., de Guzmán [1981] Real Variable Methods in Fourier Analysis, North-Holland.
S., Ham and S., Lee [2014] Restriction estimates for space curves with respect to general measures, Adv. Math. 254, 251–279.
K., Hambrook and I., Łaba [2013] On the sharpness of Mockenhaupt's restriction theorem, Geom. Funct. Anal. 23, 1262–1277.
V., Harangi, T., Keleti, G., Kiss, P., Maga, A., Máthé, P., Mattila and B., Strenner [2013] How large dimension guarantees a given angle, Monatshefte für Mathematik 171, 169–187.
K. E., Hare, M., Parasar and M., Roginskaya [2007] A general energy formula, Math. Scand. 101, 29–47.
K. E., Hare and M., Roginskaya [2002] A Fourier series formula for energy of measures with applications to Riesz products, Proc. Amer. Math. Soc. 131, 165–174.
K. E., Hare and M., Roginskaya [2003] Energy of measures on compact Riemannian manifolds, Studia Math. 159, 291–314.
K. E., Hare and M., Roginskaya [2004] The energy of signed measures, Proc. Amer. Math. Soc. 133, 397–406.
D., Hart, A., Iosevich, D., Koh and M., Rudnev [2011] Averages over hyperplanes, sumproduct theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Trans. Amer. Math. Soc. 363, 3255–3275.
V., Havin and B., Jöricke [1995] The Uncertainty Principle in Harmonic Analysis, Springer-Verlag.
J., Hawkes [1975] Some algebraic properties of small sets, Quart. J. Math. 26, 195–201.
D. R., Heath-Brown [1987] Integer sets containing no arithmetic progressions, J. London Math. Soc. (2) 35, 385–394.
Y., Heo, F., Nazarov and A., Seeger [2011] Radial Fourier multipliers in high dimensions, Acta Math. 206, 55–92.
M., Hochman [2014] On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2) 180, 773–822.
M., Hochman and P., Shmerkin [2012] Local entropy averages and projections of fractal measures, Ann. of Math. (2) 175, 1001–1059.
S., Hofmann and A., Iosevich [2005] Circular averages and Falconer/Erdős distance conjecture in the plane for random metrics, Proc. Amer. Math. Soc 133, 133–143.
S., Hofmann, J. M., Martell and I., Uriarte-Tuero [2014] Uniform rectifiability and harmonic measure II: Poisson kernels in Lp imply uniform rectifiability, Duke Math. J. 163, 1601–1654.
S., Hofmann and M., Mitrea and Taylor, Mitrea [2010] Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains, Int. Math. Res. Not. 14, 2567–2865.
L., Hörmander [1973] Oscillatory integrals and multipliers on FLp, Ark. Math. 11, 1–11.
R., Hovila [2014] Transversality of isotropic projections, unrectifiability, and Heisenberg groups, Rev. Math. Iberoam. 30, 463–476.
R., Hovila, E., Järvenpää, M., Järvenpää and F., Ledrappier [2012a] Besicovitch-Federer projection theorem and geodesic flows on Riemann surfaces, Geom. Dedicata 161, 51–61.
R., Hovila, E., Järvenpää, M., Järvenpää and F., Ledrappier [2012b] Singularity of projections of 2-dimensional measures invariant under the geodesic flow, Comm. Math. Phys. 312, 127–136.
J. E., Hutchinson [1981] Fractals and self-similarity, Indiana Univ. Math. J. 30, 713–747.
A., Iosevich [2000] Kakeya lectures, www.math.rochester.edu/people/faculty/iosevich/ expositorypapers.html.
A., Iosevich [2001] Curvature, Combinatorics, and the Fourier Transform, Notices Amer. Math. Soc. 48(6), 577–583.
A., Iosevich and I., Łaba [2004] Distance sets of well-distributed planar point sets, Discrete Comput. Geom. 31, 243–250.
A., Iosevich and I., Łaba [2005] K-distance sets, Falconer conjecture and discrete analogs, Integers 5, 11 pp.
A., Iosevich, M., Mourgoglou and E., Palsson [2011] On angles determined by fractal subsets of the Euclidean space via Sobolev bounds for bi-linear operators, to appear in Math. Res. Lett., arXiv:1110.6792.
A., Iosevich, M., Mourgoglou and S., Senger [2012] On sets of directions determined by subsets of ℝd, J. Anal. Math. 116, 355–369.
A., Iosevich, M., Mourgoglou and K., Taylor [2012] On the Mattila-Sjölin theorem for distance sets, Ann. Acad. Sci Fenn. Ser. A I Math. 37, 557–562.
A., Iosevich and M., Rudnev [2005] Non-isotropic distance measures for lattice generated sets, Publ. Mat. 49, 225–247.
A., Iosevich and M., Rudnev [2007a] Distance measures for well-distributed sets, Discrete Comput. Geom. 38, 61–80.
A., Iosevich and M., Rudnev [2007b] The Mattila integral associated with sign indefinite measures, J. Fourier Anal. Appl. 13, 167–173.
A., Iosevich and M., Rudnev [2007c] Erdős distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359, 6127–6142.
A., Iosevich and M., Rudnev [2009] Freiman theorem, Fourier transform, and additive structure of measures, J. Aust. Math. Soc. 86, 97–109.
A., Iosevich, M., Rudnev and I., Uriarte-Tuero [2014] Theory of dimension for large discrete sets and applications, Math. Model. Nat. Phenom. 9, 148–169.
A., Iosevich, E., Sawyer, K., Taylor and I., Uriarte-Tuero [2014] Measures of polynomial growth and classical convolution inequalities, arXiv:1410.1436.
A., Iosevich and S., Senger [2010] On the sharpness of Falconer's distance set estimate and connections with geometric incidence theory, arXiv:1006.1397.
V., Jarnik [1928] Zur metrischen theorie der diophantischen approximationen, Prace Mat. Fiz., 36(1), 91–106.
V., Jarnik [1931] Über die simultanen diophantischen Approximationen, Mat. Z. 33, 505–543.
E., Järvenpää, M., Järvenpää and T., Keleti [2014] Hausdorff dimension and nondegenerate families of projections, J. Geom. Anal. 24, 2020–2034.
E., Järvenpää, M., Järvenpää, T., Keleti and A., Máthé [2011] Continuously parametrized Besicovitch sets in ℝn, Ann. Acad. Sci. Fenn. Ser. A I Math. 36, 411–421.
E., Järvenpää, M., Järvenpää, F., Ledrappier and M., Leikas [2008] One-dimensional families of projections, Nonlinearity 21, 453–463.
E., Järvenpää, M., Järvenpää and M., Leikas [2005] (Non)regularity of projections of measures invariant under geodesic flow, Comm. Math. Phys. 254, 695–717.
E., Järvenpää, M., Järvenpää and M., Llorente [2004] Local dimensions of sliced measures and stability of packing dimensions of sections of sets, Adv. Math. 183, 127–154.
M., Järvenpää [1994] On the upper Minkowski dimension, the packing dimension, and orthogonal projections, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 99, 1–34.
M., Järvenpää [1997a] Concerning the packing dimension of intersection measures, Math. Proc. Cambridge Philos. Soc. 121, 287–296.
M., Järvenpää [1997b] Packing dimension, intersection measures, and isometries, Math. Proc. Cambridge Philos. Soc. 122, 483–490.
M., Järvenpää and P., Mattila [1998] Hausdorff and packing dimensions and sections of measures, Mathematika 45, 55–77.
T., Jordan and T., Sahlsten [2013] Fourier transforms of Gibbs measures for the Gauss map, to appear in Math. Ann., arXiv:1312.3619.
A., Käenmäki and P., Shmerkin [2009] Overlapping self-affine sets of Kakeya type, Ergodic Theory Dynam. Systems 29, 941–965.
J.-P., Kahane [1969] Trois notes sur les ensembles parfaits linéaires, Enseign. Math. 15, 185–192.
J.-P., Kahane [1970] Sur certains ensembles de Salem, Acta Math. Acad. Sci. Hungar. 21, 87–89.
J.-P., Kahane [1971] Sur la distribution de certaines séries aléatoires, in Colloque de Théories des Nombres (Univ. Bordeaux, Bordeaux 1969), Bull. Soc. Math. France Mém. 25, 119–122.
J.-P., Kahane [1985] Some Random Series of Functions, Cambridge University Press, second edition, first published 1968.
J.-P., Kahane [1986] Sur la dimension des intersections, in Aspects of Mathematics and Applications, North-Holland Math. Library, 34, 419–430.
J.-P., Kahane [2010] Jacques Peyriére et les produits de Riesz, arXiv:1003.4600.
J.-P., Kahane [2013] Sur un ensemble de Besicovitch, Enseign. Math. 59, 307–324.
J.-P., Kahane and R., Salem [1963] Ensembles parfaits et séries trigonométriques, Hermann.
S., Kakeya [1917] Some problems on maxima and minima regarding ovals, Tohoku Science Reports 6, 71–88.
N. H., Katz [1996] A counterexample for maximal operators over a Cantor set of directions, Math. Res. Lett. 3, 527-536.
N. H., Katz [1999] Remarks on maximal operators over arbitrary sets of directions, Bull. London Math. Soc. 31, 700–710.
N. H., Katz, I., Łaba and T., Tao [2000] An improved bound on the Minkowski dimension of Besicovitch sets in ℝ3, Ann. of Math. (2) 152, 383–446.
N. H., Katz and T., Tao [1999] Bounds on arithmetic projections, and applications to the Kakeya conjecture, Math. Res. Lett. 6, 625–630.
N. H., Katz and T., Tao [2001] Some connections between Falconer's distance set conjecture and sets of Furstenburg type, New York J. Math. 7, 149–187.
N. H., Katz and T., Tao [2002a] New bounds for Kakeya problems, J. Anal. Math. 87, 231–263.
N. H., Katz and T., Tao [2002b] Recent progress on the Kakeya conjecture, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, 2000, Publ. Mat., 161–179.
Y., Katznelson [1968] An Introduction to Harmonic Analysis, Dover Publications.
R., Kaufman [1968] On Hausdorff dimension of projections, Mathematika 15, 153–155.
R., Kaufman [1969] An exceptional set for Hausdorff dimension, Mathematika 16, 57–58.
R., Kaufman [1973] Planar Fourier transforms and Diophantine approximation, Proc. Amer.Math. Soc. 40, 199–204.
R., Kaufman [1975] Fourier analysis and paths of Brownian motion, Bull. Soc. Math. France 103, 427–432.
R., Kaufman [1981] On the theorem of Jarnik and Besicovitch, Acta Arith. 39, 265–267.
R., Kaufman and P., Mattila [1975] Hausdorff dimension and exceptional sets of linear transformations, Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 387–392.
A. S., Kechris and A., Louveau [1987] Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Notes 128, Cambridge University Press.
U., Keich [1999] On Lp bounds for Kakeya maximal functions and the Minkowski dimension in ℝ2, Bull. London Math. Soc. 31, 213–221.
T., Keleti [1998] A 1-dimensional subset of the reals that intersects each of its translates in at most a single point, Real Anal. Exchange 24, 843–844.
T., Keleti [2008] Construction of one-dimensional subsets of the reals not containing similar copies of given patterns, Anal. PDE, 1, 29–33.
T., Keleti [2014] Are lines bigger than line segments?, arXiv:1409.5992.
T., Kempton [2013] Sets of beta-expansions and the Hausdorff measure of slices through fractals, to appear in J. Eur. Math. Soc., arXiv:1307.2091.
C. E., Kenig and T., Toro [2003] Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup. 36, 323–401.
R., Kenyon [1997] Projecting the one-dimensional Sierpinski gasket, Israel J. Math. 97, 221–238.
R., Kenyon and Y., Peres [1991] Intersecting random translates of invariant Cantor sets, Invent. Math. 104, 601–629.
J., Kim [2009] Two versions of the Nikodym maximal function on the Heisenberg group, J. Funct. Anal. 257, 1493−1518.
J., Kim [2012] Nikodym maximal functions associated with variable planes in ℝ3, Integral Equations Operator Theory 73, 455–480.
L., Kolasa and T. W., Wolff [1999] On some variants of the Kakeya problem, Pacific J. Math. 190, 111–154.
S., Konyagin and I., Łaba [2006] Distance sets of well-distributed planar sets for polygonal norms, Israel J. Math. 152, 157–179.
T., Körner [2003] Besicovitch via Baire, Studia Math. 158, 65–78.
T., Körner [2009] Fourier transforms of measures and algebraic relations on their supports, Ann. Inst. Fourier (Grenoble) 59, 1291–1319.
T., Körner [2011] Hausdorff and Fourier dimension, Studia Math. 206, 37–50.
T., Körner [2014] Fourier transforms of distributions and Hausdorff measures, J. Fourier Anal. Appl. 20, 547–556.
G., Kozma and A., Olevskii [2013] Singular distributions, dimension of support, and symmetry of Fourier transform, Ann. Inst. Fourier (Grenoble) 63, 1205–1226.
E., Kroc and M., Pramanik [2014a] Kakeya-type sets over Cantor sets of directions in ℝd+1, arXiv:1404.6235.
G., Kozma and A., Olevskii [2014b] Lacunarity, Kakeya-type sets and directional maximal operators, arXiv:1404.6241.
I., Łaba [2008] From harmonic analysis to arithmetic combinatorics, Bull. Amer. Math. Soc. (N.S.) 45, 77–115.
I., Łaba [2012] Recent progress on Favard length estimates for planar Cantor sets, arXiv:1212.0247.
I., Łaba [2014] Harmonic analysis and the geometry of fractals, Proceedings of the 2014 International Congress of Mathematicians.
I., Łaba and M., Pramanik [2009] Arithmetic progressions in sets of fractional dimension, Geom. Funct. Anal. 19, 429–456.
I., Łaba and T., Tao [2001a] An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension, Geom. Funct. Anal. 11, 773–806.
I., Łaba and T., Tao [2001b] An X-ray transform estimate in ℝn, Rev. Mat. Iberoam. 17, 375–407.
I., Łaba and T. W., Wolff [2002] A local smoothing estimate in higher dimensions, J. Anal. Math. 88, 149–171.
I., Łaba and K., Zhai [2010] The Favard length of product Cantor sets, Bull. London Math. Soc. 42, 997–1009.
J., Lagarias and Y., Wang [1996] Tiling the line with translates of one tile, Invent. Math. 124, 341–365.
N. S., Landkof [1972] Foundations of Modern Potential Theory, Springer-Verlag.
F., Ledrappier and E., Lindenstrauss [2003] On the projections of measures invariant under the geodesic flow, Int. Math. Res. Not. 9, 511–526.
S., Lee [2004] Improved bounds for Bochner–Riesz and maximal Bochner–Riesz operators, Duke Math. J. 122, 205–232.
S., Lee [2006a] Bilinear restriction estimates for surfaces with curvatures of different signs, Trans. Amer. Math. Soc. 358, 3511–3533.
S., Lee [2006b] On pointwise convergence of the solutions to Schrödinger equations in ℝ2, Int. Math. Res. Not., Art. ID 32597, 21 pp.
S., Lee, K. M., Rogers and A., Seeger [2013] On space-time estimates for the Schrödinger operator, J. Math. Pures Appl.(9) 99, 62–85.
S., Lee and A., Vargas [2010] Restriction estimates for some surfaces with vanishing curvatures, J. Funct. Anal. 258, 2884–2909.
Y., Lima and C. G., Moreira [2011] Yet another proof of Marstrand's theorem, Bull. Braz. Math. Soc. (N.S.) 42, 331–345.
E., Lindenstrauss and N., de Saxcé [2014] Hausdorff dimension and subgroups of SU(2), to appear in Israel J. Math.
B., Liu [2014] On radii of spheres determined by subsets of Euclidean space, J. Fourier Anal. Appl. 20, 668–678.
Q. H., Liu, L., Xi and Y. F., Zhao [2007] Dimensions of intersections of the Sierpinski carpet with lines of rational slopes, Proc. Edinb. Math. Soc. (2) 50, 411–427.
R., Lucà and K. M., Rogers [2015] Average decay of the Fourier transform of measures with applications, arXiv:1503.00105.
R., Lyons [1995] Seventy years of Rajchman measures, J. Fourier Anal. Appl., 363–377, Kahane Special Issue.
P., Maga [2010] Full dimensional sets without given patterns, Real Anal. Exchange 36 (2010/11), 79–90.
A., Manning and K., Simon [2013] Dimension of slices through the Sierpinski carpet, Trans. Amer. Math. Soc. 365, 213–250.
J. M., Marstrand [1954] Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. (3) 4, 257–302.
J. M., Marstrand [1979] Packing planes in ℝ3, Mathematika 26, 180–183.
J. M., Marstrand [1987] Packing circles in the plane, Proc. London Math. Soc. 55, 37–58.
P., Mattila [1975] Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 227–244.
P., Mattila [1981] Integralgeometric properties of capacities, Trans. Amer. Math. Soc. 266, 539–554.
P., Mattila [1984] Hausdorff dimension and capacities of intersections of sets in n-space, Acta Math. 152, 77–105.
P., Mattila [1985] On the Hausdorff dimension and capacities of intersections, Mathematika 32, 213–217.
P., Mattila [1987] Spherical averages of Fourier transforms of measures with finite energy; dimension of intersections and distance sets, Mathematika 34, 207–228.
P., Mattila [1990] Orthogonal projections, Riesz capacities, and Minkowski content, Indiana Univ. Math. J. 39, 185–198.
P., Mattila [1995] Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press.
P., Mattila [2004] Hausdorff dimension, projections, and the Fourier transform, Publ. Mat. 48, 3–48.
P., Mattila [2014] Recent progress on dimensions of projections, in Geometry and Analysis of Fractals, D.-J., Feng and K.-S., Lau (eds.), Springer Proceedings in Mathematics and Statistics 88, Springer-Verlag, 283–301.
P., Mattila and P., Sjölin [1999] Regularity of distance measures and sets, Math. Nachr. 204, 157–162.
W., Minicozzi and C., Sogge [1997] Negative results for Nikodym maximal functions and related oscillatory integrals in curved space, Math. Res. Lett. 4, 221– 237.
T., Mitsis [1999] On a problem related to sphere and circle packing, J. London Math.Soc. (2) 60, 501–516.
T., Mitsis [2002a] A note on the distance set problem in the plane, Proc. Amer. Math. Soc. 130, 1669–1672.
T., Mitsis [2002b] A Stein-Tomas restriction theorem for general measures, Publ. Math. Debrecen 60, 89–99.
T., Mitsis [2003a] Topics in Harmonic Analysis, University of Jyväskylä, Department of Mathematics and Statistics, Report 88.
T., Mitsis [2003b] An optimal extension of Marstrand's plane-packing theorem, Arch. Math. 81, 229–232.
T., Mitsis [2004a] (n, 2)-sets have full Hausdorff dimension, Rev. Mat. Iberoam. 20, 381–393, Corrigenda: Rev. Mat. Iberoam. 21 (2005), 689–692.
T., Mitsis [2004b] On Nikodym-type sets in high dimensions, Studia Math. 163, 189–192.
T., Mitsis [2005] Norm estimates for a Kakeya-typemaximal operator, Math. Nachr. 278, 1054–1060.
G., Mockenhaupt [2000] Salem sets and restriction properties of Fourier transforms, Geom. Funct. Anal. 10, 1579–1587.
U., Molter, and E., Rela [2010] Improving dimension estimates for Furstenberg-type sets, Adv. Math. 223, 672–688.
U., Molter, and E., Rela [2012] Furstenberg sets for a fractal set of directions, Proc. Amer. Math. Soc. 140, 2753–2765.
U., Molter, and E., Rela [2013] Small Furstenberg sets, J. Math. Anal. Appl. 400, 475–486.
C. G., Moreira [1998] Sums of regular Cantor sets, dynamics and applications to number theory, Period. Math. Hungar. 37, 55–63.
C. G., Moreira and J.–C., Yoccoz [2001] Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. of Math. (2) 154, 45–96.
P., Mörters and Y., Peres [2010] Brownian Motion, Cambridge University Press.
D., Müller [2012] Problems of Harmonic Analysis related to finite type hypersurfaces in ℝ3, and Newton polyhedra, arXiv:1208.6411.
C., Muscalu and W., Schlag [2013] Classical and Multilinear Harmonic Analysis I, Cambridge University Press.
F., Nazarov, Y., Peres and P., Shmerkin [2012] Convolutions of Cantor measures without resonance, Israel J. Math. 187, 93–116.
F., Nazarov, Y., Peres and A., Volberg [2010] The power law for the Buffon needle probability of the four-corner Cantor set, Algebra i Analiz 22, 82–97; translation in St. Petersburg Math. J. 22 (2011), 61–72.
F., Nazarov, X., Tolsa and A., Volberg [2014] On the uniform rectifiability of AD regular measures with bounded Riesz transform operator: the case of codimension 1, Acta Math. 213, 237–321.
E. M., Nikishin [1972] A resonance theorem and series in eigenfunctions of the Laplace operator, Izv. Akad. Nauk SSSR Ser. Mat. 36, 795–813 (Russian).
O., Nikodym [1927] Sur la measure des ensembles plans dont tous les points sont rectilinearément accessibles, Fund. Math. 10, 116–168.
D. M., Oberlin [2006a] Restricted Radon transforms and unions of hyperplanes, Rev. Mat. Iberoam. 22, 977–992.
D. M., Oberlin [2006b] Packing spheres and fractal Strichartz estimates in ℝd for d ≥ 3, Proc. Amer. Math. Soc. 134, 3201–3209.
D. M., Oberlin [2007] Unions of hyperplanes, unions of spheres, and some related estimates, Illinois J. Math. 51, 1265–1274.
D. M., Oberlin [2012] Restricted Radon transforms and projections of planar sets, Canad. Math. Bull. 55, 815–820.
D. M., Oberlin [2014a] Exceptional sets of projections, unions of k-planes, and associated transforms, Israel J. Math. 202, 331–342.
D. M., Oberlin [2014b] Some toy Furstenberg sets and projections of the four-corner Cantor set, Proc. Amer. Math. Soc. 142, 1209–1215.
D. M., Oberlin and R., Oberlin [2013a] Unit distance problems, arXiv:1307.5039.
D. M., Oberlin and R., Oberlin [2013b] Application of a Fourier restriction theorem to certain families of projections in ℝ3, arXiv:1307.5039.
D. M., Oberlin and R., Oberlin [2014] Spherical means and pinned distance sets, arXiv:1411.0915.
R., Oberlin [2007] Bounds for Kakeya-type maximal operators associated with k-planes, Math. Res. Lett. 14, 87–97.
R., Oberlin [2010] Two bounds for the X-ray transform, Math. Z. 266, 623–644.
T., Orponen [2012a] On the distance sets of self-similar sets, Nonlinearity 25, 1919–1929.
T., Orponen [2012b] On the packing dimension and category of exceptional sets of orthogonal projections, to appear in Ann. Mat. Pur. Appl., arXiv:1204.2121.
T., Orponen [2014a] Slicing sets and measures, and the dimension of exceptional parameters, J. Geom. Anal. 24, 47–80.
T., Orponen [2014b] Non-existence of multi-line Besicovitch sets, Publ. Mat. 58, 213–220.
T., Orponen [2013a] Hausdorff dimension estimates for some restricted families of projections in ℝ3, arXiv:1304.4955.
T., Orponen [2013b] On the packing measure of slices of self-similar sets, arXiv:1309.3896.
T., Orponen [2013c] On the tube-occupancy of sets in ℝd, to appear in Int. Math. Res. Not., arXiv:1311.7340.
T., Orponen [2014c] A discretised projection theorem in the plane, arXiv:1407.6543.
T., Orponen and T., Sahlsten [2012] Tangent measures of non-doubling measures, Math. Proc. Cambridge Philos. Soc. 152, 555–569.
W., Ott, B., Hunt and V., Kaloshin [2006] The effect of projections on fractal sets and measures in Banach spaces, Ergodic Theory Dynam. Systems 26, 869–891.
J., Parcet and K. M., Rogers [2013] Differentiation of integrals in higher dimensions, Proc. Natl. Acad. Sci. USA 110, 4941–4944.
A., Peltomäki [1987] Licentiate thesis (in Finnish), University of Helsinki.
Y., Peres and M., Rams [2014] Projections of the natural measure for percolation fractals, arXiv:1406.3736.
Y., Peres and W., Schlag [2000] Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions, Duke Math. J. 102, 193–251.
Y., Peres, W., Schlag and B., Solomyak [2000] Sixty years of Bernoulli convolutions, in Fractal Geometry and Stochastics II, Birkhäuser, 39–65.
Y., Peres and P., Shmerkin [2009] Resonance between Cantor sets, Ergodic Theory Dynam. Systems 29, 201–221.
Y., Peres, K., Simon and B., Solomyak [2000] Self-similar sets of zero Hausdorff measure and positive packing measure, Israel J. Math. 117, 353–379.
Y., Peres, K., Simon and B., Solomyak [2003] Fractals with positive length and zero buffon needle probability, Amer. Math. Monthly 110, 314–325.
Y., Peres and B., Solomyak [1996] Absolute continuity of Bernoulli convolutions, a simple proof, Math. Res. Lett. 3, 231–239.
Y., Peres and B., Solomyak [1998] Self-similar measures and intersections of Cantor sets, Trans. Amer. Math. Soc. 350, 4065–4087.
Y., Peres and B., Solomyak [2002] How likely is Buffon's needle to fall near a planar Cantor set?, Pacific J. Math. 204, 473–496.
J., Peyriére [1975] Étude de quelques propriétés des produits de Riesz, Ann. Inst. Fourier Grenoble 25, 127–169.
G., Pisier [1986] Factorization of operators through Lp∞ or Lp and noncommutative generalizations, Math. Ann. 276, 105–136.
M., Pollicott and K., Simon [1995] TheHausdorff dimension of λ-expansions with deleted digits, Trans. Amer. Math. Soc. 347, 967–983.
A., Poltoratski [2012] Spectral gaps for sets and measures, Acta Math. 208, 151–209.
D., Preiss [1987] Geometry of sets and measures in ℝn; distribution, rectifiability, and densities, Ann. of Math. (2) 125, 537–643.
M., Rams and K., Simon [2014] The dimension of projections of fractal percolations, J. Stat. Phys. 154, 633–655.
M., Rams and K., Simon [2015] Projections of fractal percolations, Ergodic Theory Dyn. Systems 35, 530–545.
F., Riesz [1918] Über die Fourierkoeffizienten einer stetigen Funktion von Beschränkter Schwankung, Math. Z. 2, 312–315.
K. M., Rogers [2006] On a planar variant of the Kakeya problem, Math. Res. Lett. 13, 199–213.
V. A., Rokhlin [1962] On the fundamental ideas of measure theory, Trans. Amer.Math. Soc., Series 1, 10, 1–52.
K., Roth [1953] On certain sets of integers, J. London. Math. Soc. 28, 104–109.
R., Salem [1944] A remarkable class of algebraic integers. Proof of a conjecture by Vijayaraghavan, Duke Math. J. 11, 103–108.
R., Salem [1951] On singular monotonic functions whose spectrum has a given Hausdorff dimension, Ark. Mat. 1, 353–365.
R., Salem [1963] Algebraic Numbers and Fourier Analysis, Heath Mathematical Monographs.
E., Sawyer [1987] Families of plane curves having translates in a set of measure zero, Mathematika 34, 69–76.
N. de, Saxcé [2013] Subgroups of fractional dimension in nilpotent or solvable Lie groups, Mathematika 59, 497–511.
N. de, Saxcé [2014] Borelian subgroups of simple Lie groups, arXiv:1408.1579.
W., Schlag [1998] A geometric inequality with applications to the Kakeya problem in three dimensions, Duke Math. J. 93, 505–533.
B., Shayya [2011] Measures with Fourier transforms in L2 of a half-space, Canad. Math. Bull. 54, 172–179.
B., Shayya [2012] When the cone in Bochner's theorem has an opening less than π, Bull. London Math. Soc. 44, 207–221.
N.-R., Shieh and Y., Xiao [2006] Images of Gaussian random fields: Salem sets and interior points, Studia Math. 176, 37–60.
N.-R., Shieh and X., Zhang [2009] Random p-adic Riesz products: Continuity, singularity, and dimension, Proc. Amer. Math. Soc. 137, 3477–3486.
P., Shmerkin [2014] On the exceptional set for absolute continuity of Bernoulli convolutions, Geom. Funct. Anal. 24, 946–958.
P., Shmerkin and B., Solomyak [2014] Absolute continuity of self-similar measures, their projections and convolutions, arXiv:1406.0204.
P., Shmerkin and V., Suomala [2012] Sets which are not tube null and intersection properties of random measures, to appear in J. London Math. Soc., arXiv:1204.5883.
P., Shmerkin and V., Suomala [2014] Spatially independent martingales, intersections, and applications, arXiv:1409.6707.
K., Simon and L., Vágó [2014] Projections of Mandelbrot percolation in higher dimensions, arXiv:1407.2225.
P., Sjölin [1993] Estimates of spherical averages of Fourier transforms and dimensions of sets, Mathematika 40, 322–330.
P., Sjölin [1997] Estimates of averages of Fourier transforms of measures with finite energy, Ann. Acad. Sci. Fenn. Ser. A I Math. 22, 227–236.
P., Sjölin [2002] Spherical harmonics and spherical averages of Fourier transforms, Rend. Sem. Mat. Univ. Padova 108, 41–51.
P., Sjölin [2007] Maximal estimates for solutions to the nonelliptic Schrödinger equation, Bull. London Math. Soc. 39, 404–412.
P., Sjölin [2013] Nonlocalization of operators of Schrödinger type, Ann. Acad. Sci. Fenn. Ser. A I Math. 38, 141–147.
P., Sjölin and F., Soria [2003] Estimates of averages of Fourier transforms with respect to general measures, Proc. Royal Soc. Edinburgh A 133, 943–950.
P., Sjölin and F., Soria [2014] Estimates for multiparameter maximal operators of Schrödinger type, J. Math. Anal. Appl. 411, 129–143.
C. D., Sogge [1991] Propagation of singularities and maximal functions in the plane, Invent. Math. 104, 349–376.
C. D., Sogge [1993] Fourier Integrals in Classical Analysis, Cambridge University Press.
C. D., Sogge [1999] Concerning Nikodym-type sets in 3-dimensional curved spaces, J. Amer.Math. Soc. 12, 1–31.
B., Solomyak [1995] On the random series Σ±λn (an Erdȍs problem), Ann. of Math. (2) 142, 611–625.
E. M., Stein [1961] On limits of sequences of operators, Ann. of Math. (2) 74, 140–170.
E. M., Stein [1986] Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis, pp. 307–355, Annals of Math. Studies 112, Princeton University Press.
E. M., Stein [1993] Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory integrals, Princeton University Press.
E. M., Stein and G., Weiss [1971] Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press.
R., Strichartz [1977] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44, 705–714.
R., Strichartz [1989] Besicovitch meets Wiener–Fourier expansions and fractal measures, Bull. Amer. Math. Soc. (N.S.) 20, 55–59.
R., Strichartz [1990a] Fourier asymptotics of fractal measures, J. Funct. Anal. 89, 154–187.
R., Strichartz [1990b] Self-similar measures and their Fourier transforms I, Indiana Univ. Math. J. 39, 797–817.
R., Strichartz [1993a] Self-similar measures and their Fourier transforms II, Trans. Amer. Math. Soc. 336, 335–361.
R., Strichartz [1993b] Self-similar measures and their Fourier transforms III, Indiana Univ. Math. J. 42, 367–411.
R., Strichartz [1994] A Guide to Distribution Theory and Fourier Transforms, Studies in Advanced Mathematics, CRC Press.
T., Tao [1999a] Bochner–Riesz conjecture implies the restriction conjecture, DukeMath. J. 96, 363–375.
T., Tao [1999b] Lecture notes for the course Math 254B, Spring 1999 at UCLA, www.math.ucla.edu/tao/254b.1.99s/
T., Tao [2000] Finite field analogues of the Erdos, Falconer, and Furstenburg problems, www.math.ucla.edu/tao/preprints/kakeya.html.
T., Tao [2001] From rotating needles to stability of waves: emerging connections between combinatorics, analysis, and PDE, Notices Amer. Math. Soc. 48, 294–303.
T., Tao [2003] A sharp bilinear restriction estimate for paraboloids, Geom. Funct. Anal. 13, 1359–1384.
T., Tao [2004] Some recent progress on the restriction conjecture in Fourier analysis and convexity, 217–243, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA.
T., Tao [2008a] Dvir's proof of the finite field Kakeya conjecture, http://terrytao.wordpress.com/2008/03/24/dvirs-proof-of-the-finite-field-kakeya-conjecture, 24 March 2008.
T., Tao [2008b] A remark on the Kakeya needle problem, http://terrytao.wordpress.com/2008/12/31/a-remark-on-the-kakeya-needle-problem.
T., Tao [2009] A quantitative version of the Besicovitch projection theorem via multiscale analysis, Proc. London Math. Soc. 98, 559–584.
T., Tao [2011] An epsilon of room, II: pages from year three of a mathematical blog, Amer. Math. Soc.
T., Tao [2014] Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory, EMS Surv. Math. Sci. 1, 1–46.
T.|Tao and A., Vargas [2000] A bilinear approach to cone multipliers I. Restriction estimates, Geom. Funct. Anal. 10, 185–215.
T., Tao, A., Vargas and L., Vega [1998] A bilinear approach to the restriction and Kakeya conjectures, J. Amer.Math. Soc. 11, 967–1000.
T., Tao and V., Vu [2006] Additive Combinatorics, Cambridge University Press.
F., Temur [2014] A Fourier restriction estimate for surfaces of positive curvature in ℝ6, Rev. Mat. Iberoam. 30, 1015–1036.
X., Tolsa [2014] Analytic capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory, Birkhäuser.
P. A., Tomas [1975] A restriction theorem for the Fourier transform, Bull. Amer. Math Soc. 81, 477–478.
G., Travaglini [2014] Number Theory, Fourier Analysis and Geometric Discrepancy, London Mathematical Society Student Texts 81, Cambridge University Press.
A., Vargas [1991] Operadores maximales, multiplicadores de Bochner–Riesz y teoremas de restricción, Master's thesis, Universidad Autónoma de Madrid.
A., Volberg and V., Eiderman [2013] Nonhomogeneous harmonic analysis: 16 years of development, Uspekhi Mat. Nauk. 68, 3–58; translation in Russian Math. Surveys 68, 973–1026.
N. G., Watson [1944] A Treatise on Bessel Functions, Cambridge University Press.
Z.-Y., Wen, W., Wu and L., Xi [2013] Dimension of slices through a self-similar set with initial cubical pattern, Ann. Acad. Sci. Fenn. Ser. A I Math. 38, 473–487.
Z.-Y., Wen and L., Xi [2010] On the dimension of sections for the graph-directed sets, Ann. Acad. Sci. Fenn. Ser. A I Math. 35, 515–535.
L., Wisewell [2004] Families of surfaces lying in a null set, Mathematika 51, 155–162.
L., Wisewell [2005] Kakeya sets of curves, Geom. Funct. Anal. 15, 1319–1362.
T. W., Wolff [1995] An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoam. 11, 651–674.
T. W., Wolff [1997] A Kakeya-type problem for circles, Amer. J. Math. 119, 985–1026.
T. W., Wolff [1998] A mixed norm estimate for the X-ray transform, Rev. Mat. Iberoam. 14, 561–600.
T. W., Wolff [1999] Decay of circular means of Fourier transforms of measures, Int. Math. Res. Not. 10, 547–567.
T. W., Wolff [2000] Local smoothing type estimates on Lp for large p, Geom. Funct. Anal. 10, 1237–1288.
T. W., Wolff [2001] A sharp bilinear cone restriction estimate, Ann. of Math. (2) 153, 661–698.
T. W., Wolff [2003] Lectures on Harmonic Analysis, Amer. Math. Soc., University Lecture Series 29.
Y., Xiao [2013] Recent developments on fractal properties of Gaussian random fields, in Further Developments in Fractals and Related Fields, J. Barral and S. Seuret (eds.), Trends in Mathematics, Birkhäuser, 255–288.
Y., Xiong and J., Zhou [2005] The Hausdorff measure of a class of Sierpinski carpets, J. Math. Anal. Appl. 305, 121–129.
W. P., Ziemer [1989] Weakly Differentiable Functions, Springer-Verlag.
A., Zygmund [1959] Trigonometric Series, volumes I and II, Cambridge University Press (the first edition 1935 in Warsaw).
W. P., Ziemer [1974] On Fourier coefficients and transforms of functions of two variables, Studia Math. 50, 189–201.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.