Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T16:53:51.924Z Has data issue: false hasContentIssue false

Chapter 17 - Energy Pathways for Sustainable Development

Published online by Cambridge University Press:  05 September 2012

Keywan Riahi
Affiliation:
International Institute for Applied Systems Analysis
Frank Dentener
Affiliation:
Joint Research Center
Dolf Gielen
Affiliation:
United Nations Industrial Development Organization
Arnulf Grubler
Affiliation:
International Institute for Applied Systems Analysis, Austria and Yale University
Jessica Jewell
Affiliation:
Central European University
Zbigniew Klimont
Affiliation:
International Institute for Applied Systems Analysis
Volker Krey
Affiliation:
International Institute for Applied Systems Analysis
David McCollum
Affiliation:
University of California
Shonali Pachauri
Affiliation:
International Institute for Applied Systems Analysis
Shilpa Rao
Affiliation:
International Institute for Applied Systems Analysis
Bas van Ruijven
Affiliation:
PBL, Netherlands Environmental Assessment Agency
Detlef P. van Vuuren
Affiliation:
PBL, Netherlands Environmental Assessment Agency
Charlie Wilson
Affiliation:
Tyndall Centre for Climate Change Research
Morna Isaac
Affiliation:
PBL, Netherlands Environmental Assessment Agency
Mark Jaccard
Affiliation:
Simon Fraser University
Shigeki Kobayashi
Affiliation:
Toyota Central R&D Laboratories
Peter Kolp
Affiliation:
International Institute for Applied Systems Analysis
Eric D. Larson
Affiliation:
Princeton University and Climate Central
Yu Nagai
Affiliation:
Vienna University of Technology
Pallav Purohit
Affiliation:
International Institute for Applied Systems Analysis
Jules Schers
Affiliation:
PBL, Netherlands Environmental Assessment Agency
Diana Ürge-Vorsatz
Affiliation:
Central European University
Rita van Dingenen
Affiliation:
Joint Research Center
Oscar van Vliet
Affiliation:
International Institute for Applied Systems Analysis
Granger Morgan
Affiliation:
Carnegie Mellon University
Get access

Summary

Executive Summary

Chapter 17 explores possible transformational pathways of the future global energy system with the overarching aim of assessing the technological feasibility as well as the economic implications of meeting a range of sustainability objectives simultaneously. As such, it aims at the integration across objectives, and thus goes beyond earlier assessments of the future energy system that have mostly focused on either specific topics or single objectives. Specifically, the chapter assesses technical measures, policies, and related costs and benefits for meeting the objectives that were identified in Chapters 2 to 6, including:

  • providing almost universal access to affordable clean cooking and electricity for the poor;

  • limiting air pollution and health damages from energy use;

  • improving energy security throughout the world; and

  • limiting climate change.

The assessment of future energy pathways in this chapter shows that it is technically possible to achieve improved energy access, air quality, and energy security simultaneously while avoiding dangerous climate change. In fact, a number of alternative combinations of resources, technologies, and policies are found capable of attaining these objectives. From a large ensemble of possible transformations, three distinct groups of pathways (GEA-Supply, GEA-Mix, and GEA-Efficiency) have been identified and analyzed. Within each group, one pathway has been selected as “illustrative” in order to represent alternative evolutions of the energy system toward sustainable development. The pathway groups, together with the illustrative cases, depict salient branching points for policy implementation and highlight different degrees of freedom and different routes to the sustainability objectives.

Type
Chapter
Information
Global Energy Assessment
Toward a Sustainable Future
, pp. 1205 - 1306
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amann, M., R., Cabala, J., Cofala, C., Heyes, Z., Klimont, W., Schöpp, L., Tarrason, D., Simpson, P., Wind and J. E., Jonson, 2004: The “Current Legislation” and the “Maximum Technically Feasible Reduction” cases for the CAFE baseline emission projections. CAFE Working Group on Target Setting and Policy Advice. Laxenburg, IIASA39Google Scholar
Amann, M., L. Höglund, Isaksson, W., Winiwarter, A., Tohka, F., Wagner, W., SchöppI., Bertok and C., Heyes, 2008: Emission scenarios for non-CO2 greenhouse gases in the EU-27. Mitigation potentials and costs in 2020. IIASA, Laxenburg.Google Scholar
Amann, M., 2009: Air pollutants and greenhouse gases – Options and benefits from co-control. In Air Pollution & Climate Change – Two Sides of the Same Coin?H., Pleijel, P. E., Karlsson and D., Simpson, (eds.), Swedish Environmental Protection Agency, Stockholm pp.99–108.Google Scholar
Amann, M., I., Bertok, J., Borken-Kleefeld, J., Cofala, C., Heyes, L., Hoeglund Isaksson, Z., Klimont, P., Purohit, P., Rafaj, W., Schoepp, G., Toth, F., Wagner and W., Winiwarter, 2009: Potentials and Costs for Greenhouse Gas Mitigation in Annex I Countries: Methodology Proceedings of the National Academy of Sciences of the United States of America, International Institute for Applied Systems Analysis (IIASA), Laxenburg.Google Scholar
Andersen, P. H., J. A., Mathews and M., Rask, 2009: Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles. Energy Policy, 37 (7):2481–2486.CrossRefGoogle Scholar
,APERC, 2007: A Quest for Energy Security in the 21st Century – Resources and Constraints. Institute of Energy Economics, Asia Pacific Energy Research Centre (APERC).Google Scholar
Baciocchi, R., G., Storti and M., Mazzotti, 2006: Process design and energy requirements for the capture of carbon dioxide from air. Chemical Engineering and Processing, 45 (12):1047–1058.CrossRefGoogle Scholar
Bailis, R., M., Ezzati and D. M., Kammen, 2005: Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa. Science, 308 (5718):98–103.CrossRefGoogle ScholarPubMed
Benjamin, R., 2007: Principles for interregional transmission expansion. The Electricity Journal, 20 (8):36–47.CrossRefGoogle Scholar
Bergamaschi, P., C., Frankenberg, J. F., Meirink, M., Krol, F., Dentener, T., Wagner, U., Platt, J. O., Kaplan, S., Körner, M., Heimann, E. J., Dlugokencky and A., Goede, 2007: Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulationsJournal of Geophysical Research Atmospheres, 112 (D02304):26.CrossRefGoogle Scholar
Berk, M. M. and M. G. J., den Elzen, 2001: Options for differentiation of future commitments in climate policy: how to realise timely participation to meet stringent climate goals?Climate Policy, 1 (4):465–480.CrossRefGoogle Scholar
Birol, F. and J. H., Keppler, 2000: Prices, technology development and the rebound effect. Energy Policy, 28 (6–7):457–469.CrossRefGoogle Scholar
Blanchard, O., 2002: Scenarios for differentiating commitments. In Options for protecting the climate. K. A., Baumert, O., Blanchard, S., Llose and J. F., Perkaus, (eds.), World Resources Institute, WRI, Washington DC.Google Scholar
Böhringer, C. and H., Welsch, 2004: Contraction and Convergence of carbon emissions: an intertemporal multi-region CGE analysis. Journal of Policy Modeling, 26:21–39.CrossRefGoogle Scholar
Böhringer, C. and A., Löschel, 2005: Climate Policy Beyond Kyoto: Quo Vadis? A Computable General Equilibrium Analysis Based on Expert Judgments. KYKLOS, 58 (4):467–493.CrossRefGoogle Scholar
Bollen, J., C., A. J. G., Manders and P. J. J., Veenendaal, 2004: How much does a 30% emission reduction cost? Macroeconomic effects of post-Kyoto climate policy in 2020. Netherlands Bureau for Economic Policy Analysis, The Hague.Google Scholar
Bollen, J., C., , S., Hers and v. d. B., Zwaan, 2010: An integrated assessment of climate change, air pollution, and energy security policy. Energy Policy, 38 (8):4021–4030.CrossRefGoogle Scholar
Bouwman, L., T., Kram and K., Klein-Goldewijk, 2006: Integrated Modelling of Global Environmental Change. An Overview of IMAGE 2.4. Netherlands Environmental Assessment Agency, Bilthoven.Google Scholar
,BP, 2009: Statistical Review of World Energy. BP, London, UK.Google Scholar
Bradshaw, J. and T., Dance, 2005: Mapping geological storage prospectivity of CO2 for the world's sedimentary basins and regional source to sink matching. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies.Google Scholar
Carpenter, S. and P., Pingali, 2005: Millennium Ecosystem Assessment – Scenarios Assessment. Island Press, Washington DC.Google Scholar
Clarke, L., J., Edmonds, V., Krey, R., Richels, S., Rose and M., Tavoni, 2009: International climate policy architectures: Overview of the EMF 22 international scenarios. Energy Economics, 31 (Supplement 2):S64–S81.CrossRefGoogle Scholar
Coady, D., R., Gillingham, R., Ossowski, J., Piotrowski, S., Tareq and J., Tyson, 2010: Petroleum Product Subsidies: Costly, Inequitable, and Rising. International Monetary Fund (IMF).Google Scholar
Cofala, J., M., Amann, Z., Klimont, K., Kupiainen and L. Hoeglund, Isaksson, 2007: Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric Environment, 41 (38):8486–8499.CrossRefGoogle Scholar
Cofala, J., P., Rafaj, W., Schoepp, Z., Klimont and M., Amann, 2009: Emissions of Air Pollutants for the World Energy Outlook 2009 Energy Scenarios. IIASA, Laxenburg.Google Scholar
Cofala, J., M., Amann, W., Asman, I., Bertok, C., Heyes, L. Hoeglund, Isaksson, Z., Klimont, W., Schoepp and F., Wagner, 2010: Integrated assessment of air pollution and greenhouse gases mitigation in Europe. Archives of Environmental Protection, 36 (1):29–39.Google Scholar
Cohen, A., R., Anderson, Bart, Ostro, K. D., Pandey, M., Krzyzanowski, N., Künzli, K., Gutschmidt, A. C., Pope III, I., Romieu, J. M., Samet and K. R., Smith, 2004: Urban Air Pollution. In Comparative quantification of health risks:global and regional burden of disease attributable to selected major risk factors. E. M. e.al, , (ed.), World Health Organization, Geneva pp.1353–1434.Google Scholar
Criqui, P., A., Kitous, M. M., Berk, M. G. J., den Elzen, B., Eickhout, P., Lucas, D. P., van Vuuren, N., Kouvaritakis and D., van Regemorter, 2003: Greenhouse gas reduction pathways in the UNFCCC Process upto 2025 – Technical Report. CNRS-IEPE, Grenoble, France.Google Scholar
De, S. and M., Assadi, 2009: Impact of cofiring biomass with coal in power plants – A techno-economic assessment. Biomass and Bioenergy, 33 (2):283–293.CrossRefGoogle Scholar
Delucchi, M. A. and M. Z., Jacobson, 2011: Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy.Google Scholar
den Elzen, M. G. J. and P., Lucas, 2005: The FAIR model: a tool to analyse environmental and costs implications of climate regimes. Environmental Modeling and Assessment, 10 (2):115–134.CrossRefGoogle Scholar
den Elzen, M. G. J., P., Lucas and D. P., Van Vuuren, 2005: Abatement costs of postKyoto climate regimes. Energy Policy, 33 (16):2138–2151.CrossRefGoogle Scholar
den Elzen, M. G. J. and M., Meinshausen, 2005: Meeting the EU 2°C climate target: global and regional emission implications. Netherlands Environmental Assessment Agency (MNP), Bilthoven, the Netherlands.Google Scholar
den Elzen, M. G. J. and D. P., van Vuuren, 2007: Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. Proceedings of the National Academy of Sciences of the United States of America, 104 (46):17931–17936.CrossRefGoogle ScholarPubMed
Dentener, F., J., Drevet, J. F., Lamarque, I., Bey, B., Eickhout, A. M., Fiore, D., Hauglustaine, L. W., Horowitz, M., Krol, U. C., Kulshrestha, M., Lawrence, C., Galy-Lacaux, S., Rast, D., Shindell, D., Stevenson, T., Van Noije, C., Atherton, N., Bell, D., Bergman, T., Butler, J., Cofala, B., Collins, R., Doherty, K., Ellingsen, J., Galloway, M., Gauss, V., Montanaro, J. F., Müller, G., Pitari, J., Rodriguez, M., Sanderson, S., Strahan, M., Schultz, F., Solmon, K., Sudo, S., Szopa and O., Wild, 2006: Nitrogen and sulphur deposition on regional and global scales: a multi-model evaluation. Global Biogeochemical Cycles, GB4003:21.Google Scholar
Dornburg, V. and A. P. C., Faaij, 2005: Cost and CO2-Emission Reduction of Biomass Cascading: Methodological Aspects and Case Study of SRF Poplar. Climatic Change, 71 (3):373–408.CrossRefGoogle Scholar
Dornburg, V., D., van Vuuren, G., van de Ven, H., Langeveld, M., Meeusen, M., Banse, M., van Oorschot, J., Ros, G., van den Born, H., Aiking, M., Londo, H., Mozaffarian, P., Verweij, E., Lysen and A., Faaij, 2010: Bioenergy revisited: Key factors in global potentials of bioenergy. Energy Environment Science, 3 (3):258–267.CrossRefGoogle Scholar
Edenhofer, O., C., Carraro, J.-C., Hourcade, K., Neuhoff, G., Luderer, C., Flachsland, M., Jakob, A., Popp, J., Steckel, J., Strohschein, N., Bauer, S., Brunner, M., LeimbachH., Lotze-Campen, V., Bosetti, E. d., Cian, M., Tavoni, O., Sassi, H., Waisman, R., Crassous-Doerfler, S., Monjon, S., Dröge, H. v., Essen, P. d., Río and A., Türk, 2009: The Economics of Decarbonization – Report of the RECIPE project., Potsdam Institute for Climate Impact Research, Potsdam.Google Scholar
Edenhofer, O., B., Knopf, T., Barker, L., Baumstark, E., Bellevrat, B., Chateau, P., Criqui, M., Isaac, A., Kitous, S., Kypreos, M., Leimbach, K., Lessmann, B., Magne, Å., Scrieciu, H., Turton and D. P., Van Vuuren, 2010a: The economics of low stabilization: Model comparison of mitigation strategies and costs. Energy Journal, 31 (Special):223–241.CrossRefGoogle Scholar
Edenhofer, O., B., Knopf, T., Barker, L., Baumstark, E., Bellevrat, B., Chateau, P., Criqui, M., Isaac, A., Kitous, S., Kypreos, M., Leimbach, K., Lessmann, B., Magne, Å., Scrieciu, H., Turton and D. P., Van Vuuren, 2010b: The economics of low stabilization: Model comparison of mitigation strategies and costs. Energy Journal 31 (Special):223–241.CrossRefGoogle Scholar
Ekholm, T., V., Krey, S., Pachauri and K., Riahi, 2010: Determinants of household energy consumption in India. Energy Policy, 38 (10):5696–5707.CrossRefGoogle Scholar
,European Commission, 2007: Limiting Global Climate Change to 2 degrees Celsius: The way ahead for 2020 and beyond. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions, Brussels.Google Scholar
Fischedick, M., R., Schaeffer, A., Adedoyin, M., Akai, T., Bruckner, L., Clarke, V., Krey, I., Savolainen, S., Teske, D., Ürge-Vorsatz, R., Wright, 2011: Mitigation Potential and Costs. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. O., Edenhofer, R., Pichs-Madruga, Y., Sokona, K., Seyboth, P., Matschoss, S., Kadner, T., Zwickel, P., Eickemeier, G., Hansen, S., Schlömer, C., von Stechow (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Fisher, B. S., N., Nakicenovic, K., Alfsen, J. Corfee, Morlot, F., de la Chesnaye, J.-C., Hourcade, K., Jiang, M., Kainuma, E., La Rovere, A., Matysek, A., Rana, K., Riahi, R., Richels, S., Rose, D., van Vuuren and R., Warren, 2007: Issues related to mitigation in the long term context. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. B., Metz, O. R., Davidson, P. R., Bosch, R., Dave and L. A., Meyer, (eds.), Cambridge University Press, Cambridge, UK pp.169–250.Google Scholar
Forest, C. E., P. H., Stone, A. P., Sokolov, M. R., Allen and M. D., Webster, 2002: Quantifying uncertainties in climate system properties with the use of recent climate observations. Science, 295 (5552):113–117.CrossRefGoogle ScholarPubMed
Fóyn, T. H. Y., K., Karlsson, O., Balyk and P. E., Grohnheit, 2011: A global renewable energy system: A modelling exercise in ETSAP/TIAM. Applied Energy, 88 (2):526–534.CrossRefGoogle Scholar
Gaunt, C. T., 2005: Meeting electrification's social objectives in South Africa, and implications for developing countries. Energy Policy, 33 (10):1309–1317.CrossRefGoogle Scholar
Gilli, P. V., N., Nakicenovic and R., Kurz 1995: First- and second-law efficiencies of the global and regional energy systems. Preceedings of the 16th World Energy Congress, Tokyo, Japan.Google Scholar
Goldemberg, J., 2007: Ethanol for a Sustainable Energy Future. Science, 315 (5813):808–810.CrossRefGoogle ScholarPubMed
Granier, C., B., Bessagnet, T., Bond, A., D'Angiola, H. G. v. d., Gon, G., Frost, A., Heil, M., Kainuma, J., Kaiser, S., Kinne, Z., Klimont, S., Kloster, J. F., Lamarque, C., Liousse, T., Matsui, F., Meleux, A., Mieville, T., Ohara, J. C., Raut, K., Riahi, M., Schultz, S., Smith, A. M., Thomson, J. v., Aardenne, G. v. d., Werf and D. v., Vuuren, 2010: Evolution of anthropogenic and biomass burning emissions at global and regional scales during the 1980–2010 period. Climatic Change, Submitted, under review.Google Scholar
Greening, L., D. L., Greene and C., Difiglio, 2000: Energy efficiency and consumption – the rebound effect – a survey. Energy Policy, 28 (6–7):389–401.CrossRefGoogle Scholar
Groenenberg, H., K., Blok and J. P., van der Sluijs, 2004: Global Triptych: a bot-tom-up approach for the differentiation of commitments under the Climate Convention. Climate Policy, 4:153–175.CrossRefGoogle Scholar
Gross, R., P., Heptonstall, M., Leach, D., Anderson, T., Green and J., Skea, 2007: Renewables and the grid: understanding intermittency. Energy, 160 (1):31–41.Google Scholar
Grubler, A. and N., Nakicenovic, 1994: International burden sharing in greenhouse gas reduction. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.Google Scholar
Grubler, A., 2010: The costs of the French nuclear scale-up: A case of negative learning by doing. Energy Policy, 38 (9):5174–5188.CrossRefGoogle Scholar
Grubler, A. and K., Riahi, 2010: Do governments have the right mix in their energy R&D portfolios?Carbon Management, 1 (1):79–87.CrossRefGoogle Scholar
Hanley, N., P. G., McGregor, J. K., Swales and K., Turner, 2009: Do increases in energy efficiency improve environmental quality and sustainability?Ecological Economics, 68 (3):692–709.CrossRefGoogle Scholar
Hendriks, C., W., Graus and F., van Bergen, 2004: Global carbon dioxide storage potential and costs. Ecofys, Utrecht.Google Scholar
Hirschberg, S., C., Bauer, P., Burgherr, R., Dones, W., Schenler, T., Bachmann and D. Gallego, Carrera, 2007: Environmental, Economic and Social Criteria and Indicators for Sustainability Assessment of Energy Technologies. New Energy Externalities Developments for Sustainability (NEEDS), Rome, Italy.Google Scholar
Höhne, N., D., Phylipsen, S., Ullrich and K., Blok, 2005: Options for the second commitment period of the Kyoto Protocol, research report for the German Federal Environmental Agency. ECOFYS Gmbh, Berlin.Google Scholar
Höhne, N., 2006: What is Next After the Kyoto Protocol? Assessment of Options for International Climate Policy Post 2012. Techne Press, Amsterdam.Google Scholar
Holttinen, H., P., Meibom, A., Orths, F., van Hulle, B., Lange, A., Tiedemann, M., O'Malley, J., Perik, B., Ummels, J., Tande, A., Estanqueiro, M., Matos, E., Gomez, L., Soder, G., Strbac, A., Shakoor, J., Smith and M., Milligan, 2009: Design and operation of power systems with large amounts of wind power: Phase one 2006–2008. VTT Technical Research Centre of Finland, Espoo, Finland.Google Scholar
,IEA, 2006: World Energy Outlook 2006. Hrsg, ., (ed.) International Energy Agency (IEA) of the Organisation for Economic Co-operation and Development (OECD), Paris, France.Google Scholar
,IEA, 2007: Tracking Industrial Energy Efficiency and CO2 Emissions. International Energy Agency (IEA), OECD, Paris, France.Google Scholar
,IEA, 2009a: World Energy Outlook 2009. International Energy Agency (IEA), Paris, France.Google Scholar
,IEA, 2009b: Energy Technology Transitions for Industry. International Energy Agency (IEA), Paris, France.Google Scholar
,IEA, 2010: Energy Technology Perspectives 2010. International Energy Agency (IEA), Paris, France. International Energy Agency IEA, 2009: Energy Balances of Non-OECD CountriesGoogle Scholar
,IPCC, 2005: Special Report on CO2 capture and storage. B., Metz, O. R., Davidson, H., de Coninck and L. M., Meyer, (eds.), Intergovernmental Panel on Climate Change (IPCC), Cambridge, UK.Google Scholar
,IPCC, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability Working Group II contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Intergovernmental Panel on Climate Change (IPCC), Cambridge, UK.Google Scholar
Jacobson, M. Z. and M. A., Delucchi, 2011: Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, 39: 1154–1169.CrossRefGoogle Scholar
Jansen, J. C., W. G., van Arkel and M. G., Boots, 2004: Designing indicators of longterm energy supply security. ECN, Petten, Netherlands.Google Scholar
Keith, D., M., Ha-Duong and J., Stolaroff, 2006: Climate strategy with CO2 capture from the air. Climatic Change, 74 (1–3):17–45.CrossRefGoogle Scholar
Kemmler, A., 2007: Factors influencing household access to electricity in India. Energy for Sustainable Development, 11 (4):13–20.CrossRefGoogle Scholar
Keppo, I., B. C., O'Neill and K., Riahi, 2007: Probabilistic temperature change projections and energy system implications of greenhouse gas emission scenarios. Technological Forecasting and Social Change, 74 (7):936–961.CrossRefGoogle Scholar
Kinne, S., M., Schulz, C., Textor, S., Guibert, Y., Balkanski, S. E., Bauer, T., Berntsen, T. F., Berglen, O., Boucher, M., Chin, W., Collins, F., Dentener, T., Diehl, R., Easter, J., Feichter, D., Fillmore, S., Ghan, P., Ginoux, S., Gong, A., Grini, J., Hendricks, M., Herzog, L., Horowitz, I., Isaksen, T., Iversen, A., Kirkevåg, S., Kloster, D., Koch, J. E., Kristjansson, M., Krol, A., Lauer, J. F., Lamarque, G., Lesins, X., Liu, U., Lohmann, V., Montanaro, G., Myhre, J., Penner, G., Pitari, S., Reddy, O., Seland, P., Stier, T., Takemura, and X., Tie, 2006: An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6:1815–1834.CrossRefGoogle Scholar
Krewitt, W., S., Teske, S., Simon, T., Pregger, W., Graus, E., Blomen, S., Schmid and O., Schäfer, 2009: Energy [R]evolution 2008 – a sustainable world energy perspective. Energy Policy, 37 (12):5764–5775.CrossRefGoogle Scholar
Krey, V. and K., Riahi, 2009: Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets – greenhouse gas mitigation scenarios for the 21st century. Energy Economics, 31 (Supplement 2):S94–S106.CrossRefGoogle Scholar
Krey, V. and L., Clarke, 2011: Role of renewable energy in climate mitigation: a synthesis of recent scenarios. Climate Policy, 11 (4): 1131–1158.CrossRefGoogle Scholar
Kruyt, B., D. P., van Vuuren, H. J. M., de Vries and H., Groenenberg, 2009: Indicators for energy security. Energy Policy, 37 (6):2166–2181.CrossRefGoogle Scholar
Kupiainen, K. and Z., Klimont, 2004: Primary emissions of submicron and carbonaceous particles in Europe and the potential for their control. International Institute for Applied Systems Analysis Interim Report, Laxenburg, Austria.Google Scholar
Lamarque, J. F., T. C., Bond, V., Eyring, C., Granier, A., Heil, Z., Klimont, D., Lee, C., Liousse, A., Mieville, B., Owen, M. G., Schultz, D., Shindell, S. J., Smith, E., Stehfest, J., Van Aardenne, O. R., Cooper, M., Kainuma, N., Mahowald, J. R., McConnell, V., Naik, K., Riahi and D. P., Van Vuuren, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics Discussions, 10 (2):4963–5019.CrossRefGoogle Scholar
,LBST, 2008: European Hydrogen Energy RoadmapHyways.Google Scholar
Leggett, J., W., Pepper and R. J., Swart, 1992: Emissions Scenarios for the IPCC: an Update. In Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment. J. T., Houghton, B. A., Callander and S. K., Varney, (eds.), Cambridge University Press, Cambridge pp.71–95.Google Scholar
Luderer, G., V., Bosetti, J., Steckel, H., Waisman, N., Bauer, E., Decian, M., Leimbach, O., Sassi and M., Tavoni, 2009: The Economics of Decarbonization – Results from the RECIPE model intercomparison. RECIPE Working Paper, Potsdam Institute for Climate Impact Research, Potsdam.Google Scholar
McCollum, D., Krey, V., Riahi, K., 2011: An integrated approach to energy sustainability. Nature Climate Change, 1(9): 428–429.CrossRefGoogle Scholar
Mechler, R., M., Amann and W., Schoepp, 2002: A Methodology to Estimate Changes in Statistical Life Expectancy Due to the Control of Particulate Matter in Air Pollution. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.Google Scholar
Meinshausen, M., 2006: What Does a 2°C Target Mean for Greenhouse Gas Concentrations? A Brief Analysis Based on Multi-Gas Emission Pathways and Several Climate Sensitivity Uncertainty Estimates. In Avoiding Dangerous Climate Change. H. J., Schellnhuber, W., Cramer, N., Nakicenovic, T., Wigley and G., Yohe, (eds.), Cambridge University Press, Cambridge, UK.Google Scholar
Meinshausen, M., N., Meinshausen, W., Hare, S. C. B., Raper, K., Frieler, R., Knutti, D. J., Frame and M. R., Allen, 2009: Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature, 458 (7242):1158–1162.CrossRefGoogle ScholarPubMed
Messner, S. and M., Strubegger, 1995: User's guide for MESSAGE III. IIASA, Laxenburg, Austria.Google Scholar
Messner, S. and L., Schrattenholzer, 2000: Linking an Energy Supply Model with a Macroeconomic Model and Solving It Interactively. Energy, 25:267–282.CrossRefGoogle Scholar
Michaelowa, A., K., Tangen and H., Hasselknippe, 2005: Issues and Options for the Post-2012 Climate Architecture – An Overview. International Environmental Agreements, 5 (1):5–24.CrossRefGoogle Scholar
Midilli, A., M., Ay, I., Dincer and M. A., Rosen, 2005: On hydrogen and hydrogen energy strategies: I: current status and needs. Renewable and Sustainable Energy Reviews, 9 (3):255–271.CrossRefGoogle Scholar
Milligan, M., D. J., Lew, D., Corbus, P., Piwko, N., Miller, K., Clark, G., Jordan, L., Freeman, B., Zavadil and M., Schuerger, 2009: Large-Scale Wind Integration Studies in the United States: Preliminary Results. Bremen, Germany.CrossRefGoogle Scholar
Modi, V., S., McDade, D., Lallement and J., Saghir, 2005: Energy Services for the Millennium Development Goals. Energy Sector Management Assistance Programme (ESMAP), United Nations Development Programme (UNDP), UN Millennium Project, and World Bank, New York.Google Scholar
Nakicenovic, N., A., Grübler, A., Inaba, S., Messner, S., Nilsson, Y., Nishimura, H.-H., Rogner, A., Schäfer, L., Schrattenholzer, M., Strubegger, J., Swisher, D., Victor and D., Wilson, 1993: Long-term strategies for mitigating global warming. Energy – The International Journal, 18 (5):401–609.CrossRefGoogle Scholar
Nakicenovic, N., A., Grübler, H., Ishitani, T., Johansson, G., Marland, J.-R., Moreira and H.-H., Rogner, 1996: Energy primer. In Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. R. T., Watson, M. C., Zinyowera and R. H., Moss, (eds.), Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York pp.77–92.Google Scholar
Nakicenovic, N., A., Grübler and A., McDonald, 1998: Global energy perspectives. Cambridge University Press, Cambridge, UK.Google Scholar
Nakicenovic, N. and R., Swart, (eds.), 2000: IPCC Special Report on Emissions Scenarios. Cambridge University Press, Cambridge.
Nakicenovic, N. and K., Riahi, 2003: Model runs with MESSAGE in the Context of the Further Development of the Kyoto-Protocol. IIASA, WBGU – German Advisory Council on Global Change, Berlin.Google Scholar
Nakicenovic, N., P., Kolp, K., Riahi, M., Kainuma and T., Hanaoka, 2006: Assessment of emissions scenarios revisited. Environmental Economics and Policy Studies, 7 (3):137–173.CrossRefGoogle Scholar
,NATURALHY, 2010: Preparing for the hydrogen economy by using existing natural gas systems as a catalyst. Final publishable activity report, N.V. Nederlandse Gasunie.Google Scholar
Nemet, G. F., T., Holloway and P., Meier, 2010: Implications of incorporating air quality co benefits into climate change policymaking. Environmental Research Letters, 5 (1):1–9.CrossRefGoogle Scholar
O'Neill, B. C., Dalton, M., Fuchs, R., Jiang, L., Pachauri, S., Zigovad, K., 2010a: Global demographic trends and future carbon emissions. Proceedings of the National Academy of Sciences, 107 (41):17521–17526.CrossRefGoogle ScholarPubMed
O'Neill, B. C., K., Riahi, and I., Keppo, 2010b: Mitigation implications of mid-century targets that preserve long-term climate policy options. Proceedings of the National Academy of Sciences, 107 (3):1011–1016.CrossRefGoogle Scholar
Pachauri, S., Y., Nagai and K., Riahi, Options for and Impacts of Achieving the Household Energy Access Challenge by 2030. Forthcoming.
Pachauri, S., 2007: An Energy Analysis of Household Consumption – Changing Patterns of Direct and Indirect Use in India. Springer, Dordrecht, Netherlands.Google Scholar
Pandey, R., 2002: Energy policy modelling: agenda for developing countries. Energy Policy, 30 (2):97–106.CrossRefGoogle Scholar
Pepper, W., J., Leggett, R., Swart, J., Watson, J., Edmonds and I., Mintzer, 1992: Emission scenarios for the IPCC. An update: assumptions, methodology and results. IPCC, Geneva, Switzerland.Google Scholar
Persson, T. A., C., Azar and K., Lindgren, 2006: Allocation of CO2 emission permits – economic incentives for emission reductions in developing countries. Energy Policy, In Press.Google Scholar
,Planning Commission, 2006: Integrated Energy Policy, Report of the Expert Committee. Kirit Parikh Expert Committee on Integrated Energy Policy, Government of India, Planning Commission, New Delhi.Google Scholar
Price, L. and A., McKane, 2009: Policies and Measures to realize Industrial Energy Efficiency and mitigate Climate Change. UN Energy (UNIDO, LBNL, IAEA), Vienna.Google Scholar
Rafaj, P., S., Rao, Z., Klimont, P., Kolp and W., Schöpp, 2010: Emissions of air pollutants implied by global long-term energy scenarios. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.Google Scholar
Rajagopal, D. and D., Zilberman, 2007: Review of Environmental, Economic and Policy Aspects of Biofuels. Sustainable Rural and Urban Development Team, Development Research Group, The World Bank, Washington, DC.CrossRefGoogle Scholar
Ramanathan, V. and Y., Xu, 2010: The Copenhagen Accord for limiting global warming: Criteria, constraints, and available avenues. Proceedings of the National Academy of Sciences, 107 (18):8055–8062.CrossRefGoogle ScholarPubMed
Rao, S., V., Chirkov, F., Dentener, R., Van Dingenen, S., Pachauri, P., Purohit, M., Amann, C., Heyes, P., Kinney, P., Kolp, Z., Klimont, K., Riahi and W., Schoepp, 2012: Environmental modeling and methods for – estimation of the global health impacts of air pollution. Environmental Modeling and Assessment (2012): 1–10.Google Scholar
Riahi, K. and R. A., Roehrl, 2000: Greenhouse gas emissions in a dynamics-as-usual scenario of economic and energy development. Technological Forecasting and Social Change, 63 (2–3):175–205.CrossRefGoogle Scholar
Riahi, K., A., Grübler and N., Nakicenovic, 2007: Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74 (7):887–935.CrossRefGoogle Scholar
Riahi, K., S., Rao, V., Krey, C., Cho, V., Chirkov, G., Fischer, G., Kindermann, N., Nakicenovic and P., Rafaj, 2011: RCP 8.5 – A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109: 33–57.CrossRefGoogle Scholar
Robinson, M. S., 1996: Addressing some key questions on finance and poverty. Journal of International Development, 8 (2):153–161.3.0.CO;2-6>CrossRefGoogle Scholar
Roehrl, R. A. and K., Riahi, 2000: Technology dynamics and greenhouse gas emissions mitigation: A cost assessment. Technological Forecasting and Social Change, 63 (2–3):231–261.CrossRefGoogle Scholar
Rogelj, J., J., Nabel, C., Chen, W., Hare, K., Markmann, M., Meinshausen, M., Schaeffer, K., MacEy and N., Höhne, 2010: Copenhagen Accord pledges are paltry. Nature, 464 (7292):1126–1128.CrossRefGoogle ScholarPubMed
Rogner, H. H., 1997: An Assessment of World Hydrocarbon Resources. Annual Review of Energy and the Environment, 22 (1):217–262.CrossRefGoogle Scholar
Saygin, D., M., Patel and D., Gielen, 2010: Global benchmarking for the industrial sector-first steps in application and analysis of competitiveness. UNIDO, in Preparation, Vienna.Google Scholar
Scheepers, M. J. J., A. J., Seebregts, J. J., de Jong and J. M., Maters, 2007: EU Standards for Energy Security of Supply – Updates on the Crisis Capability Index and the Supply/Demand Index Quantification for EU-27Energy Research Centre of the Netherlands (ECN), Clingendael International Energy Programme (CIEP), Petten.Google Scholar
Schwartz, P., 1991: The Art of the Longview: Three Global Scenarios to 2005. Doubleday Publications, New York, NY.Google Scholar
Shannon, C. E. and W., Weaver, 1963: The mathematical theory of communication. University of Illinois Press, Urbana.Google Scholar
Sherif, S. A., F., Barbir and T. N., Veziroglu, 2005: Wind energy and the hydrogen economy – review of the technology. Solar Energy, 78 (5):647–660.CrossRefGoogle Scholar
Smith, J. B., S. H., Schneider, M., Oppenheimerd, G. W., Yohee, W., Haref, M. D., Mastrandreac, A., Patwardhang, I., Burtonh, J., Corfee-Morloti, C. H. D., Magadzaj, H.-M., Füsself, A. B., Pittockk, A., Rahmanl, A., Suarezm and J.-P. v., Yperselen, 2009: Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. Proceedings of the National Academy of Sciences of the United States of America, 106 (11):4133–4137.Google Scholar
Smith, J. C., M. R., Milligan, D. E.A., and B., Parsons, 2007: Utility wind integration and operating impact state of the art. IEEE Transactions on Power Systems, 22 (2):900–908.CrossRefGoogle Scholar
Sovacool, B. and M. A., Brown, 2010: Competing dimensions of energy security: An international perspective. Annual Review of Environment and Resources, 35 (1):77–108.CrossRefGoogle Scholar
Sovacool, B. K., 2009: Rejecting renewables: The socio-technical impediments to renewable electricity in the United States. Energy Policy, 37 (11):4500–4513.CrossRefGoogle Scholar
Stevenson, D. S. e. a., 2006: Multi-model ensemble simulations of presentday and near-future tropospheric ozone. Journal of Geophysical Research, 111 (D08301):23.CrossRefGoogle Scholar
Stirling, A., 1994: Diversity and ignorance in electricity supply investment: Addressing the solution rather than the problem. Energy Policy, 22 (3):195–216.CrossRefGoogle Scholar
Swider, D. J., L., Beurskens, S., Davidson, J., Twidell, J., Pyrko, W., Prüggler, H., Auer, K., Vertin and R., Skema, 2008: Conditions and costs for renewables electricity grid connection: Examples in Europe. Renewable Energy, 33 (8):1832–1842.CrossRefGoogle Scholar
Teske, S., T., Pregger, S., Simon, T., Naegler, W., Graus and C., Lins, 2010: Energy [R] evolution 2010 – a sustainable world energy outlook. Energy Efficiency: 1–25.Google Scholar
Textor, C., M., Schulz, S., Guibert, S., Kinne, Y., Balkanski, S., Bauer, T., Berntsen, T., Berglen, O., Boucher, M., Chin, F., Dentener, T., Diehl, J., Feichter, D., Fillmore, P., Ginoux, S., Gong, A., Grini, J., Hendricks, L., Horowitz, P., Huang, I. S. A., Isaksen, T., Iversen, S., Kloster, D., Koch, A., Kirkevåg, J. E., Kristjansson, M., Krol, A., Lauer, J. F., Lamarque, X., Liu, V., Montanaro, G., Myhre, J. E., Penner, G., Pitari, M. S., Reddy, Ø., Seland, P., Stier, T., Takemura, and X., Tie, 2007: The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment. Atmospheric Chemistry and Physics, 7:4489–4501.CrossRefGoogle Scholar
,UN DESA, 2009: World Population Prospects: The 2008 Revision Database. Working Paper No. ESA/P/WP.210, United Nations Department of Economic and Social Affairs (UN DESA), New York.Google Scholar
,UNCTAD, 2003: World Investment Report. United Nations, New York and Geneva.Google Scholar
,UNDP and WHO, 2009: The Energy Access Situation in Developing Countries: A Review Focusing on the Least Developed Countries and Sub-Saharan Africa. United Nations Development Programme (UNDP), New York, NY, USA and the World Health Organization (WHO), Geneva, Switzerland.Google Scholar
,UNEP, 2010: The Emissions Gap Report Are the Copenhagen Accord Pledges Sufficient to Limit Global Warming to 2°C or 1.5°C?United Nations Environment Programme (UNEP), Nairobi, Kenya.Google Scholar
,United Nations Conference of the Parties, 2009: Copenhagen Accord FCCC/CP/2009/L.7. Conference of the Parties, 7–18 December 2009, Copenhagen.Google Scholar
Vajjhala, S. P. and P. S., Fischbeck, 2007: Quantifying siting difficulty: A case study of U.S. transmission line siting. Energy Policy, 35 (1):650–671CrossRefGoogle Scholar
van der Zwaan, B. and K., Smekens, 2009: CO2 capture and storage with leakage in an energy-climate model. Environmental Modeling and Assessment, 14 (2):135–148.CrossRefGoogle Scholar
van Ruijven, B., F., Urban, R., Benders, H., Moll, J., van der Sluijs, B., de Vries and D., van Vuuren, 2008: Modeling energy and development: An evaluation of models and concepts. World Development, 36 (12):2801–2821.CrossRefGoogle Scholar
van Vliet, O. P. R., A. S., Brouwer, T., Kuramochi, M., van den Broek and A. P. C., Faaij, 2011: Energy use, cost and CO2 emissions of electric cars. Journal of Power Sources, 196(4): 2298–2310.CrossRefGoogle Scholar
van Vliet, O. P. R., T., Kruithof and A. P. C., Faaij, 2010: Techno-economic comparison of series hybrid, fuel cell and regular cars. Journal of Power Sources, 195 (19):6570–6585.CrossRefGoogle Scholar
van Vuuren, D. and K., Riahi, 2011: The relationship between short-term emissions and long-term concentration targets. Climatic Change, 104 (3–4):793–801.CrossRefGoogle Scholar
van Vuuren, D. P., J., Cofala, H. E., Eerens, R., Oostenrijk, C., Heyes, Z., Klimont, M. G. J., den Elzen and M., Amann, 2006: Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe. Energy Policy, 34 (4):444–460.CrossRefGoogle Scholar
van Vuuren, D. P., J., van Vliet and E., Stehfest, 2009: Future bio-energy potential under various natural constraints. Energy Policy, 37 (11):4220–4230.CrossRefGoogle Scholar
van Vuuren, D. P., E., Bellevrat, A., Kitous and M., Isaac, 2010: Bio-energy use and low stabilization scenarios. The Energy Journal, 31 (Special):192–222.Google Scholar
Vera, I. and L., Langlois, 2007: Energy indicators for sustainable developmentEnergy, 32 (6):875–882.CrossRefGoogle Scholar
Verbruggen, A. and M., Al Marchohi, 2010: Views on peak oil and its relation to climate change policy. Energy Policy, 38 (10):5572–5581.CrossRefGoogle Scholar
von Weizsäcker, E. U., A. B., Lovins and L. H., Lovins, 1997: Factor Four: Doubling Wealth – Halving Resource Use. Earthscan, London.Google Scholar
,WBCSD/IEA, 2009: Cement Technology Roadmap 2009: Carbon emissions reductions up to 2050. World Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA), Geneva.Google Scholar
,WHO, 2008: The Global Burden of Disease: 2004 update. World Health Organization (WHO).Google Scholar
Wigley, T. M. L. and S. C. B., Raper, 2001: Interpretation of high projections for global-mean warming. Science, 293 (5529):451–454.CrossRefGoogle ScholarPubMed
Wilson, C., 2009: Meta-analysis of unit and industry level scaling dynamics in energy technologies and climate change mitigation scenarios. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.Google Scholar
Winkler, H., R., Spalding-Fecher and L., Tyani, 2002: Comparing developing countries under potential carbon allocation schemes. Climate Policy, 2 (4):303–318 (316).CrossRefGoogle Scholar
Wise, M., K., Calvin, A., Thomson, L., Clarke, B., Bond-Lamberty, R., Sands, S. J., Smith, A., Janetos and J., Edmonds, 2009: Implication of limiting CO2 concentration for land use and energy. Science, 29 (324:5931):1183–1186.Google Scholar
,World Bank, 2008: The Welfare Impact of Rural Electrification: A Reassessment of the Costs and Benefits. World Bank, Washington D.C.Google Scholar
Yang, C., 2008: Hydrogen and electricity: Parallels, interactions, and convergence. International Journal of Hydrogen Energy, 33 (8):1977–1994.CrossRefGoogle Scholar
Zeman, F., 2007: Energy and material balance of CO2 capture from ambient air. Environmental Science & Technology, 41 (21):7558–7563CrossRefGoogle ScholarPubMed
Zomers, A., 2001: Rural Electrification, Utilities' Chafe or Challenge? Faculty of Technology and Management, University of Twente, Enschede.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×