Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T12:47:00.949Z Has data issue: false hasContentIssue false

Tracing young SMBHs in the dusty distant universe – a Chandra view of DOGs

Published online by Cambridge University Press:  29 March 2021

Karín Menéndez-Delmestre
Affiliation:
Valongo Observatory, Federal University of Rio de Janeiro, Ladeira Pedro Antônio 43, Centro, Rio de Janeiro, RJ, Brazil email: kmd@astro.ufrj.br
Laurie Riguccini
Affiliation:
Valongo Observatory, Federal University of Rio de Janeiro, Ladeira Pedro Antônio 43, Centro, Rio de Janeiro, RJ, Brazil email: kmd@astro.ufrj.br
Ezequiel Treister
Affiliation:
Pontificia Universidad Católica, Instituto de Astrofísica, Vicuña Mackenna 4860, Macul, Santiago, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The coexistence of star formation and AGN activity has geared much attention to dusty galaxies at high redshifts, in the interest of understanding the origin of the Magorrian relation observed locally, where the mass of the stellar bulk in a galaxy appears to be tied to the mass of the underlying supermassive black hole. We exploit the combined use of far-infrared (IR) Herschel data and deep Chandra ˜160 ksec depth X-ray imaging of the COSMOS field to probe for AGN signatures in a large sample of >100 Dust-Obscured Galaxies (DOGs). Only a handful (˜20%) present individual X-ray detections pointing to the presence of significant AGN activity, while X-ray stacking analysis on the X-ray undetected DOGs points to a mix between AGN activity and star formation. Together, they are typically found on the main sequence of star-forming galaxies or below it, suggesting that they are either still undergoing significant build up of the stellar bulk or have started quenching. We find only ˜30% (6) Compton-thick AGN candidates (NH > 1024 cm–2), which is the same frequency found within other soft- and hard-X-ray selected AGN populations. This suggests that the large column densities responsible for the obscuration in Compton-thick AGNs must be nuclear and have little to do with the dust obscuration of the host galaxy. We find that DOGs identified to have an AGN share similar near-IR and mid-to-far-IR colors, independently of whether they are individually detected or not in the X-ray. The main difference between the X-ray detected and the X-ray undetected populations appears to be in their redshift distributions, with the X-ray undetected ones being typically found at larger distances. This strongly underlines the critical need for multiwavelength studies in order to obtain a more complete census of the obscured AGN population out to higher redshifts. For more details, we refer the reader to Riguccini et al. (2019).

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alaghband-Zadeh, S., Chapman, S. C., Swinbank, A. M., et al. 2012, MNRAS, 424, 2232 CrossRefGoogle Scholar
Alexander, D. M., Bauer, F. E., Chapman, S. C., et al. 2005, ApJ, 632, 736 CrossRefGoogle Scholar
Aird, J., Coil, A. L., Georgakakis, A., et al. 2015, MNRAS, 451, 1892 CrossRefGoogle Scholar
Berta, S., Magnelli, B., Nordon, R., et al. 2011, A&A, 532, A49 Google Scholar
Brusa, M., Zamorani, G., Comastri, A., et al. 2007, ApJ Supplement Series, 172, 353 CrossRefGoogle Scholar
Brusa, M., Civano, F., Comastri, A., et al. 2010, ApJ, 716, 348 CrossRefGoogle Scholar
Buchner, J. & Bauer, F. E. 2017, MNRAS, 465, 4348 CrossRefGoogle Scholar
Burlon, D., Ajello, M., Greiner, J., et al. 2011, ApJ, 728, 58 CrossRefGoogle Scholar
Casey, C. M., Narayanan, D., & Cooray, A. 2014, Physics Reports, 541, 45 CrossRefGoogle Scholar
Chapman, S. C., Blain, A. W., Smail, I., et al. 2005, ApJ, 622, 772 CrossRefGoogle Scholar
Civano, F., Hickox, R. C., Puccetti, S., et al. 2015, ApJ, 808, 185 CrossRefGoogle Scholar
Civano, F., Marchesi, S., Comastri, A., et al. 2016, ApJ, 819, 62 CrossRefGoogle Scholar
Dey, A., Soifer, B. T., Desai, V., et al. 2008, ApJ, 677, 943 CrossRefGoogle Scholar
Engel, H., Tacconi, L. J., Davies, R. I., et al. 2010, ApJ, 724, 233 CrossRefGoogle Scholar
Fiore, F., Puccetti, S., Brusa, M., et al. 2009, ApJ, 693, 447 CrossRefGoogle Scholar
Georgakakis, A., Rowan-Robinson, M., Nandra, K., et al. 2010, MNRAS, 406, 420 CrossRefGoogle Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2008, ApJ Supplement Series, 175, 356 CrossRefGoogle Scholar
Ilbert, O., Capak, P., Salvato, M., et al. 2009, ApJ, 690, 1236 CrossRefGoogle Scholar
Juneau, S., Dickinson, M., Bournaud, F., et al. 2013, ApJ, 764, 176 CrossRefGoogle Scholar
Lansbury, G. B., Alexander, D. M., Aird, J., et al. 2017, ApJ, 846, 20 CrossRefGoogle Scholar
Masini, A., Civano, F., Comastri, A., et al. 2018, ApJ Supplement Series, 235, 17 CrossRefGoogle Scholar
Menéndez-Delmestre, K., Blain, A. W., Smail, I., et al. 2009, ApJ, 699, 667 CrossRefGoogle Scholar
Menéndez-Delmestre, K., Blain, A. W., Swinbank, M., et al. 2013, ApJ, 767, 151 CrossRefGoogle Scholar
Nandra, K. & Pounds, K. A. 1994, MNRAS, 268, 405 CrossRefGoogle Scholar
Page, M. J., Loaring, N. S., Dwelly, T., et al. 2006, MNRAS, 369, 156 CrossRefGoogle Scholar
Pope, A., Bussmann, R. S., Dey, A., et al. 2008, ApJ, 689, 127 CrossRefGoogle Scholar
Ricci, C., Ueda, Y., Koss, M. J., et al. 2015, ApJ Letters, 815, L13 CrossRefGoogle Scholar
Ricci, C., Bauer, F. E., Treister, E., et al. 2017, MNRAS, 468, 1273 Google Scholar
Riguccini, L., Le Floc’h, E., Mullaney, J. R., et al. 2015, MNRAS, 452, 470 CrossRefGoogle Scholar
Riguccini, L. A., Treister, E., Menéndez-Delmestre, K., et al. 2019, AJ, 157, 233 CrossRefGoogle Scholar
Roseboom, I. G., Oliver, S. J., Kunz, M., et al. 2010, MNRAS, 409, 48 CrossRefGoogle Scholar
Salvato, M., Hasinger, G., Ilbert, O., et al. 2009, ApJ, 690, 1250 CrossRefGoogle Scholar
Sanders, D. B., Soifer, B. T., Elias, J. H., et al. 1988, ApJ, 325, 74 CrossRefGoogle Scholar
Swinbank, A. M., Smail, I., Chapman, S. C., et al. 2010, MNRAS, 405, 234 Google Scholar
Toft, S., Smolčić, V., Magnelli, B., et al. 2014, ApJ, 782, 68 CrossRefGoogle Scholar
Tozzi, P., Gilli, R., Mainieri, V., et al. 2006, A&A, 451, 457 Google Scholar
Treister, E., Urry, C. M., Chatzichristou, E., et al. 2004, ApJ, 616, 123 CrossRefGoogle Scholar
Treister, E., Cardamone, C. N., Schawinski, K., et al. 2009, ApJ, 706, 535 CrossRefGoogle Scholar
Treister, E., Urry, C. M., Schawinski, K., et al. 2010, ApJ Letters, 722, L238 CrossRefGoogle Scholar
Worsley, M. A., Fabian, A. C., Bauer, F. E., et al. 2005, MNRAS, 357, 1281 CrossRefGoogle Scholar