Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T08:49:36.092Z Has data issue: false hasContentIssue false

The Multiwavelength AGN Population and the X-ray Background

Published online by Cambridge University Press:  25 July 2014

Ezequiel Treister
Affiliation:
Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción, Chile email: etreiste@astro-udec.cl
Claudia M. Urry
Affiliation:
YCAA & Dept. of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520
Kevin Schawinski
Affiliation:
Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
Brooke D. Simmons
Affiliation:
Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK.
Priyamvada Natarajan
Affiliation:
YCAA, Dept. of Astronomy & Dept. of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520
Marta Volonteri
Affiliation:
Institut d' Astrophysique de Paris, 98bis Bd. Arago, 75014 Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to fully understand galaxy formation we need to know when in the cosmic history are supermassive black holes (SMBHs) growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. Active Galactic Nuclei (AGN) population synthesis models that can explain the spectral shape and intensity of the cosmic X-ray background (CXRB) indicate that most of the SMBH growth occurs in moderate-luminosity (LX~ 1044 erg/s) sources (Seyfert-type AGN), at z~ 0.5−1 and in heavily obscured but Compton-thin, NH~ 1023cm−2, systems. However, this is not the complete history, as a large fraction of black hole growth does not emit significantly in X-rays either due to obscuration, intrinsic low luminosities or large distances. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We further investigate the AGN triggering mechanism as a function of bolometric luminosity, finding evidence for a strong connection between significant black hole growth events and major galaxy mergers from z~ 0 to z~ 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. AGN activity triggered by major galaxies is responsible for ~60% of the total black hole growth. Finally, we constrain the total accreted mass density in supermassive black holes at z > 6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. We estimate an accreted mass density <1000 MMpc−3 at z~ 6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abel, T., Bryan, G. L., & Norman, M. L. 2000, ApJ, 540, 39Google Scholar
Ajello, M.et al. 2008, ApJ, 689, 666Google Scholar
Ballantyne, D. R., Everett, J. E., & Murray, N. 2006, ApJ, 639, 740Google Scholar
Barnes, J. E. & Hernquist, L. E. 1991, ApJL, 370, L65CrossRefGoogle Scholar
Begelman, M. C., Volonteri, M., & Rees, M. J. 2006, MNRAS, 370, 289Google Scholar
Bonoli, S., Mayer, L., & Callegari, S. 2014, MNRAS, 437, 1576Google Scholar
Bromm, V., Coppi, P. S., & Larson, R. B. 2002, ApJ, 564, 23Google Scholar
Bromm, V. & Loeb, A. 2003, ApJ, 596, 34CrossRefGoogle Scholar
Churazov, E.et al. 2007, A&A, 467, 529Google Scholar
Darg, D. W., Kaviraj, S., Lintott, C. J., et al. 2010, MNRAS, 401, 1552CrossRefGoogle Scholar
De Luca, A. & Molendi, S. 2004, A&A, 419, 837Google Scholar
De Robertis, M. M., Yee, H. K. C., & Hayhoe, K. 1998, ApJ, 496, 93Google Scholar
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604Google Scholar
Ferrarese, L. & Merritt, D. 2000, ApJL, 539, L9Google Scholar
Finn, R. A., Impey, C. D., & Hooper, E. J. 2001, ApJ, 557, 578Google Scholar
Gebhardt, K.et al. 2000, ApJL, 539, L13CrossRefGoogle Scholar
Gilli, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79Google Scholar
Gruber, D. E., Matteson, J. L., Peterson, L. E., & Jung, G. V. 1999, ApJ, 520, 124Google Scholar
Hickox, R. C. & Markevitch, M. 2006, ApJ, 645, 95Google Scholar
Hopkins, P. F., Richards, G. T., & Hernquist, L. 2007, ApJ, 654, 731CrossRefGoogle Scholar
Hopkins, P. F. & Hernquist, L. 2009, ApJ, 694, 599Google Scholar
Kormendy, J. & Richstone, D. 1995, ARA&A, 33, 581Google Scholar
Kormendy, J. & Kennicutt, R. C. Jr. 2004, ARA&A, 42, 603Google Scholar
Lodato, G. & Natarajan, P. 2006, MNRAS, 371, 1813Google Scholar
Loeb, A. & Rasio, F. A. 1994, ApJ, 432, 52Google Scholar
Madau, P. & Rees, M. J. 2001, ApJL, 551, L27Google Scholar
Moore, B., Katz, N., Lake, G., Dressler, A., & Oemler, A. 1996, Nature, 379, 613Google Scholar
Salvaterra, R., Haardt, F., Volonteri, M., & Moretti, A. 2012, A&A, 545, L6Google Scholar
Sanders, D. B., Soifer, B. T., Elias, J. H., et al. 1988, ApJ, 325, 74Google Scholar
Schawinski, K., Treister, E., Urry, C. M., et al. 2011, ApJL, 727, L31Google Scholar
Schawinski, K., Urry, M., Treister, E., Simmons, B., Natarajan, P., & Glikman, E. 2011, ApJL, 743, L37Google Scholar
Schawinski, K., Simmons, B. D., Urry, C. M., Treister, E., & Glikman, E. 2012, MNRAS, 425, L61Google Scholar
Shankar, F., Weinberg, D. H. & Miralda-Escudé, J. 2009, ApJ, 690, 20Google Scholar
Simmons, B. D., Urry, C. M., Schawinski, K., Cardamone, C., & Glikman, E. 2012, ApJ, 761, 75CrossRefGoogle Scholar
Treister, E. & Urry, C. M. 2005, ApJ, 630, 115Google Scholar
Treister, E., Urry, C. M., & Virani, S. 2009a, ApJ, 696, 110Google Scholar
Treister, E.et al. 2009b, ApJ, 706, 535CrossRefGoogle Scholar
Treister, E., Natarajan, P., Sanders, D. B., et al. 2010, Science, 328, 600Google Scholar
Treister, E., et al. 2010, ApJL, 722, L238Google Scholar
Treister, E., Schawinski, K., Volonteri, M., Natarajan, P., & Gawiser, E. 2011, Nature, 474, 356Google Scholar
Treister, E., Schawinski, K., Urry, C. M., & Simmons, B. D. 2012, ApJL, 758, L39Google Scholar
Treister, E., Schawinski, K., Volonteri, M., & Natarajan, P. 2013, ApJ, 778, 130Google Scholar
Volonteri, M. 2010, A&ARv, 18, 279Google Scholar
Volonteri, M. & Begelman, M. C. 2010, MNRAS, 409, 1022Google Scholar