Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-08T08:11:57.041Z Has data issue: false hasContentIssue false

HIGHER ORDER DIFFERENTIABILITY OF OPERATOR FUNCTIONS IN SCHATTEN NORMS

Published online by Cambridge University Press:  13 February 2019

Christian Le Merdy
Affiliation:
Laboratoire de Mathématiques de Besançon, UMR 6623, CNRS, Université Bourgogne Franche-Comté, 25030Besançon Cedex, France (clemerdy@univ-fcomte.fr)
Anna Skripka
Affiliation:
Department of Mathematics and Statistics, MSC01 1115, University of New Mexico, Albuquerque, NM87131, USA (skripka@math.unm.edu)

Abstract

We establish the following results on higher order ${\mathcal{S}}^{p}$-differentiability, $1<p<\infty$, of the operator function arising from a continuous scalar function $f$ and self-adjoint operators defined on a fixed separable Hilbert space:

  1. (i) $f$ is $n$ times continuously Fréchet ${\mathcal{S}}^{p}$-differentiable at every bounded self-adjoint operator if and only if $f\in C^{n}(\mathbb{R})$;

  2. (ii) if $f^{\prime },\ldots ,f^{(n-1)}\in C_{b}(\mathbb{R})$ and $f^{(n)}\in C_{0}(\mathbb{R})$, then $f$ is $n$ times continuously Fréchet ${\mathcal{S}}^{p}$-differentiable at every self-adjoint operator;

  3. (iii) if $f^{\prime },\ldots ,f^{(n)}\in C_{b}(\mathbb{R})$, then $f$ is $n-1$ times continuously Fréchet ${\mathcal{S}}^{p}$-differentiable and $n$ times Gâteaux ${\mathcal{S}}^{p}$-differentiable at every self-adjoint operator.

We also prove that if $f\in B_{\infty 1}^{n}(\mathbb{R})\cap B_{\infty 1}^{1}(\mathbb{R})$, then $f$ is $n$ times continuously Fréchet ${\mathcal{S}}^{q}$-differentiable, $1\leqslant q<\infty$, at every self-adjoint operator. These results generalize and extend analogous results of Kissin et al. (Proc. Lond. Math. Soc. (3)108(3) (2014), 327–349) to arbitrary $n$ and unbounded operators as well as substantially extend the results of Azamov et al. (Canad. J. Math.61(2) (2009), 241–263); Coine et al. (J. Funct. Anal.; doi:10.1016/j.jfa.2018.09.005); Peller (J. Funct. Anal.233(2) (2006), 515–544) on higher order ${\mathcal{S}}^{p}$-differentiability of $f$ in a certain Wiener class, Gâteaux ${\mathcal{S}}^{2}$-differentiability of $f\in C^{n}(\mathbb{R})$ with $f^{\prime },\ldots ,f^{(n)}\in C_{b}(\mathbb{R})$, and Gâteaux ${\mathcal{S}}^{q}$-differentiability of $f$ in the intersection of the Besov classes $B_{\infty 1}^{n}(\mathbb{R})\cap B_{\infty 1}^{1}(\mathbb{R})$. As an application, we extend ${\mathcal{S}}^{p}$-estimates for operator Taylor remainders to a broad set of symbols. Finally, we establish explicit formulas for Fréchet differentials and Gâteaux derivatives.

Type
Research Article
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported by the French ‘Investissements d’Avenir’ program, project ISITE-BFC (contract ANR-15-IDEX-03).

Research supported in part by NSF grants DMS-1500704 and DMS-1554456. Corresponding author.

References

Arazy, J., Barton, T. J. and Friedman, Y., Operator differentiable functions, Integral Equations Operator Theory 13(4) (1990), 462487.Google Scholar
Azamov, N., Carey, A., Dodds, P. and Sukochev, F., Operator integrals, spectral shift, and spectral flow, Canad. J. Math. 61(2) (2009), 241263.Google Scholar
Birman, M. and Solomyak, M., Double Stieltjes operator integrals III, Prob. Math. Phys., Izdat. Leningrad Univ. 6 (1973), 2753 (Russian).Google Scholar
Coine, C., Le Merdy, C., Skripka, A. and Sukochev, F., Higher order 𝓢2 -differentiability and application to Koplienko trace formula, J. Funct. Anal. doi:10.1016/j.jfa.2018.09.005.Google Scholar
Coine, C., Le Merdy, C. and Sukochev, F., When do triple operator integrals take value in the trace class? Preprint, 2017, arXiv:1706.01662.Google Scholar
Daletskii, Yu. L. and Krein, S. G., Integration and differentiation of functions of Hermitian operators and application to the theory of perturbations, Trudy Sem. Functsion. Anal., Voronezh. Gos. Univ. 1 (1956), 81105 (Russian).Google Scholar
De Pagter, B. and Sukochev, F., Differentiation of operator functions in non-commutative L p-spaces, J. Funct. Anal. 212(1) (2004), 2875.Google Scholar
Farforovskaja, J. B., An estimate of the norm of ∥f (B) - f (A)∥ for selfadjoint operators A and B, Investigations on linear operators and theory of functions, VI, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56 (1976), 143162, 197 (Russian).Google Scholar
Kadison, R. V. and Ringrose, J. R., Fundamentals of the Theory of Operator Algebras, Vol. I, Elementary Theory, Pure and Applied Mathematics, Volume 100 (Academic Press, Inc., New York, 1983).Google Scholar
Kissin, E., Potapov, D., Shulman, V. and Sukochev, F., Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations, Proc. Lond. Math. Soc. (3) 108(3) (2014), 327349.Google Scholar
Kissin, E. and Shulman, V. S., Operator-differentiable functions and derivations of operator algebras, Funktsional. Anal. i Prilozhen. 30(4) (1996), 7577 (Russian). Translation: Funct. Anal. Appl. 30(4) (1996), 280–282 (1997).Google Scholar
Kissin, E. and Shulman, V. S., Classes of operator-smooth functions. II. Operator-differentiable functions, Integral Equations Operator Theory 49(2) (2004), 165210.Google Scholar
Koplienko, L. S., Trace formula for perturbations of nonnuclear type, Sibirsk. Mat. Zh. 25 (1984), 6271 (Russian). Translation: Sib. Math. J. 25 (1984), 735–743.Google Scholar
Krein, M. G., On a trace formula in perturbation theory, Matem. Sbornik 33 (1953), 597626 (Russian).Google Scholar
Pavlov, B., Multidimensional operator integrals, Problems of Math. Anal., no. 2: Linear Operators and Operator Equations (1969), 99122 (Russian).Google Scholar
Pedersen, G. K., Operator differentiable functions, Publ. Res. Inst. Math. Sci. 36(1) (2000), 139157.Google Scholar
Peller, V. V., Hankel operators in the theory of perturbations of unitary and selfadjoint operators, Funktsional. Anal. i Prilozhen. 19(2) (1985), 3751. 96 (Russian). Translation: Funct. Anal. Appl. 19 (1985), 111–123.Google Scholar
Peller, V. V., Hankel operators in the perturbation theory of unbounded selfadjoint operators, in Analysis and Partial Differential Equations, Lecture Notes in Pure and Applied Mathematics, Volume 122, pp. 529544 (Dekker, New York, 1990).Google Scholar
Peller, V. V., Multiple operator integrals and higher operator derivatives, J. Funct. Anal. 233(2) (2006), 515544.Google Scholar
Peller, V. V., The Lifshitz-Krein trace formula and operator Lipschitz functions, Proc. Amer. Math. Soc. 144(12) (2016), 52075215.Google Scholar
Potapov, D. and Sukochev, F., Operator-Lipschitz functions in Schatten-von Neumann classes, Acta Math. 207(2) (2011), 375389.Google Scholar
Potapov, D., Skripka, A. and Sukochev, F., Spectral shift function of higher order, Invent. Math. 193(3) (2013), 501538.Google Scholar
Potapov, D., Skripka, A., Sukochev, F. and Tomskova, A., Multilinear Schur multipliers and applications to operator Taylor remainders, Adv. Math. 320 (2017), 10631098.Google Scholar
Schwartz, J. T., Nonlinear Functional Analysis (Gordon and Breach Science Publishers, New York-London-Paris, 1969).Google Scholar
Simon, B., Trace Ideals and Their Applications, 2nd edn, Mathematical Surveys and Monographs, Volume 120 (American Mathematical Society, Providence, RI, 2005).Google Scholar
Skripka, A., Taylor Approximations of Operator Functions, Operator Theory: Advances and Applications, Volume 240, pp. 243256 (Birkhäuser, Basel, 2014).Google Scholar
Skripka, A., Estimates and trace formulas for unitary and resolvent comparable perturbations, Adv. Math. 311 (2017), 481509.Google Scholar
Skripka, A. and Tomskova, A., Multilinear operator integrals: theory and applications, Preprint.Google Scholar
Sten’kin, V. V., Multiple operator integrals, Izv. Vysš. Učebn. Zaved. Matematika 179(4) (1977), 102115 (Russian).Google Scholar