Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-07T17:23:22.539Z Has data issue: false hasContentIssue false

Advances in methods for surveillance of rejection

Published online by Cambridge University Press:  21 September 2005

Robert J. Boucek Jr
Affiliation:
Division of Pediatric Cardiology, Congenital Heart Institute of Florida and University of South Florida/All Children's Hospital, St Petersburg, Florida, USA
Mark M. Boucek
Affiliation:
Denver Children's Hospital, Denver, Colorado, USA
Alfred Asante-Korang
Affiliation:
Division of Pediatric Cardiology, Congenital Heart Institute of Florida and University of South Florida/All Children's Hospital, St Petersburg, Florida, USA

Extract

Transplantation is an effective treatment modality for infants1 and children2 with end-stage cardiac diseases. Rejection remains a major complication (Figure 1), even in newborn infants.3 Acute rejection can best be operationally defined by clinical findings, histopathology, and/or abnormalities of ventricular function of new origin that require, and respond to, intensified immunosuppression. Mechanistically, the ability to detect acute rejection is critically dependent on the detection of significant new myocytic injury, damage, and/or death. Surveillance for rejection is critically important in determining both long and short-term outcomes following cardiac transplantation. The ideal strategy for surveillance should have a high negative predictive value, correctly identifying the absence of myocytic injury, with high specificity, such that it does not falsely predict such injury.4

Type
Heart Transplantation
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey Ll, Nehlsen-Cannarella SL, Doroshow RW, Jacobson JG, Martin RD, Allard MW, Hyde MR, Dang Bui RH, Petry EL. Cardiac allotransplantation in newborns as therapy for hypoplastic left heart syndrome. New Engl J Med 1986; 315: 949951.Google Scholar
Boucek MM, Far A, Novick RJ, Bennett LE, Keck BM, Hosenpud JD. The Registry of the International Society for Heart and Lung Transplantation: Fourth Official Pediatric Report – 2000. J Heart Lung Transplant 2001; 20: 3952.Google Scholar
Rotando K, Naftel D, Boucek R, Canter C, McGiffin D, Pahl E, Chinnock R, Morrow R, Kirklin J and Group aPS (1996). Allograft rejection following cardiac transplantation in infants and children. J Heart Lung Transplant 15: S80.
Valantine HA, Yeoh TK, Gibbons R, McCarthy P, Stinson EB, Billingham ME, Popp RL. Sensitivity and specificity of diastolic indexes for rejection surveillance: temporal correlation with endomyocardial biopsy. J Heart Lung Transplant 1991; 10: 757765.Google Scholar
Pophal SG, Sigfusson G, Booth KL, Bacanu SA, Webber SA, Ettedgui JA, Neches WH, Park SC. Complications of endomyocardial biopsy in children. J Am Coll Cardiol 1999; 34: 21052110.Google Scholar
Yoshizato T, Edwards WD, Alboliras ET, Hagler DJ, Driscoll DJ. Safety and utility of endomyocardial biopsy in infants, children and adolescents: a review of 66 procedures in 53 patients. J Am Coll Cardiol 1990; 15: 436442. [Review]Google Scholar
Hussain A, Balzer D, Thomas P, Ruble S, Canter C. Tricuspid regurgitation after pediatric cardiac transplantation. J Heart Lung Transplant 1996; 15: 583.Google Scholar
Chin C, Akhta MJ, Rosenthal DN, Bernstein D. Safety and utility of the routine surveillance biopsy in pediatric patients 2 years after heart transplantation. J Pediatr 2000; 136: 238242.Google Scholar
Wagner K, Oliver MC, Boyle GJ, Miller SA, Law YM, Pigula F, Webber SA. Endomyocardial biopsy in pediatric heart transplant recipients: a useful exercise? (Analysis of 1169 biopsies). Pediatr Transplant 2000; 4: 186192.Google Scholar
Sethi GK, Kosaraju S, Arabia FA, Roasdo LJ, McCarthy MS, Copeland JG. Is it necessary to perform surveillance endomyocardial biopsies in heart transplant recipients? J Heart Lung Transplant 1995; 14: 10471051.Google Scholar
Pahl E, Naftel DC, Canter EC, Frazier EA, Kirklin JK, Morrow WR. Pediatric Heart Transplant Study. Death after rejection with severe hemodynamic compromise in pediatric heart transplant recipients: a multi-institutional study. J Heart Lung Transplant 2001; 20: 279287.Google Scholar
Mills RM, Naftel DC, Kirklin JK, Van Bakel AB, Jaski BE, Massin KE, Eisen HJ, Lee FA, Fishbein DP, Bourge RC. Heart transplant rejection with hemodynamic compromise: a multi-institutional study of the role of endomyocardial cellular infiltrate. Cardiac Transplant Research Database. J Heart Lung Transplant 1997; 16: 813821.Google Scholar
Moran AM, Lipshultz SE, Rifai N, O'Brien P, Mooney H, Perry S, Perez-Atayde A, Lipsitz SR, Colan SD. Non-invasive assessment of rejection in pediatric transplant patients: serologic and echocardiographic prediction of biopsy-proven myocardial rejection. Journal of Heart & Lung Transplantation 2000; 19: 756764.Google Scholar
Holzmann G, Gidding S, Crawford S and Zales V. Usefulness of left ventricular inflow Doppler in predicting rejection in pediatric cardiac transplant recipients. American Journal of Cardiology 1994; 73: 205207Google Scholar
Valantine HA, Hatle LK, Appleton CP, Gibbons R, Popp RL. Variability of Doppler echocardiographic indexes of left ventricular filling in transplant recipients and in normal subjects. J Am Soc Echocardiogr 1990; 3: 276284.Google Scholar
Leonard HC, O'Sullivan JJ, Dark JH. Long-term follow-up of pediatric cardiac transplant recipients on a steroid-free regime: the role of endomyocardial biopsy. J Heart Lung Transplant 2000; 19: 469472.Google Scholar
Grasser B, Iberer F, Schreier G, Schaffellner S, Kleinert R, Prenner G, Kastner P, Hutten H, Tscheliessnigg K. Non-invasive cardiac allograft monitoring: the graz experience. J Heart Lung Transplant 2000; 19: 653659.Google Scholar
Kniepeiss D, Iberer F, Grasser B, Schaffellner S, Schreier G, Tscheliessnigg KH. Noninvasive cardiac allograft monitoring. Transplant Proc 2001; 33: 24562457.Google Scholar
Boucek MM, Mathis CM, Boucek RJ Jr, Hodgkin DD, Kanakriyeh MS, McCormack J, Gundry SR, Bailey L. Prospective evaluation of echocardiography for primary rejection surveillance after infant heart transplantation: comparison with endomyocardial biopsy. J Heart Lung Transplant 1994; 13: 6673.Google Scholar
Tantengco MV, Dodd D, Frist WH, Boucek MM, Boucek RJ. Echocardiographic abnormalities with acute cardiac allograft rejection in children: correlation with endomyocardial biopsy. J Heart Lung Transplant 1993; 12: S203S210.Google Scholar
Dodd DA, Brady LD, Carden KA, Frist WH, Boucek MM, Boucek RJ Jr. Pattern of echocardiographic abnormalities with acute cardiac allograft rejection in adults: correlation with endomyocardial biopsy. J Heart Lung Transplant 1993; 12: 10091017.Google Scholar
Santos-Ocampo SD, Sekarski TJ, Saffitz JE, Bridges ND, Huddleston CB, Spray TL, Canter CE. Echocardiographic characteristics of biopsy-proven cellular rejection in infant heart transplant recipients. J Heart Lung Transplant 1996; 15: 2534.Google Scholar
Valantine HA, Hunt SA, Gibbons R, Billingham ME, Stinson EB, Popp RL. Increasing pericardial effusion in cardiac transplant recipients. Circulation 1989; 79: 603609.Google Scholar
Putzer GJ, Cooper D, Keehn C, Asante-Korang A, Boucek MM, Boucek RJ Jr, An improved echocardiographic rejection-surveillance strategy following pediatric heart transplantation. J Heart Lung Transplant 2000; 19: 11661174.Google Scholar
Garcia MJ, Thomas JD, Klein AL. New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol 1998; 32: 865875. [Review]Google Scholar
Gorcsan J 3rd., Gulati VK, Mandarino WA, Katz WE. Color-coded measures of myocardial velocity throughout the cardiac cycle by tissue Doppler imaging to quantify regional left ventricular function. Am Heart J 1996; 131: 12031213.Google Scholar
Aranda JM Jr., Weston MW, Puleo JA, Fontanet HL. Effect of loading conditions on myocardial relaxation velocities determined by Doppler tissue imaging in heart transplant recipients. J Heart Lung Transplant 1998; 17: 693697.Google Scholar
Puleo JA, Aranda JM, Weston MW, Cintron G, French M, Clark, Fontanet HL. Noninvasive detection of allograft rejection in heart transplant recipients by use of Doppler tissue imaging. J Heart Lung Transplant 1998; 17: 176184.Google Scholar
Dandel M, Hummel M, Muller J, Wellnhofer E, Meyer R, Solowjowa N, Ewert R, Hetzer R. Reliability of tissue Doppler wall motion monitoring after heart transplantation for replacement of invasive routine screenings by optimally timed cardiac biopsies and catheterizations. Circulation 2001; 104: I184I191.Google Scholar
Stengel SM, Allemann Y, Zimmerli M, Lipp E, Kucher N, Mohacsi P, Seiler C. Doppler tissue imaging for assessing left ventricular diastolic dysfunction in heart transplant rejection. Heart 2001; 86: 432437.Google Scholar
Boucek RJ, Asante-Korang A, Boucek M, Fickey M. Myocardial Wall Doppler Imaging. J Heart Lung Transplant 2002; 21: 84.Google Scholar
Boucek MM, Mathis CM, Kanakriyeh MS, Hodgkin DD, Boucek RJ Jr., Bailey LL. Serial echocardiographic evaluation of cardiac graft rejection after infant heart transplantation. J Heart Lung Transplant 1993; 12: 824831.Google Scholar
Pauliks L, Pietra B, DeGroff C, Knudson O, Logan L, Boucek M, Valdes-Cruz L. The Novel Tissue Doppler Marker of Systolic Function, Isovolumic Acceleration, Improves Non-invasive Detection of Acute Graft Rejection in Pediatric Heart Transplant Recipients. 2003