Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-16T13:59:18.870Z Has data issue: false hasContentIssue false

Involvement of the dehydroleucodine alpha-methylene-gamma-lactone function in GVBD inhibition in Bufo arenarum oocytes

Published online by Cambridge University Press:  10 August 2009

G. Sánchez Toranzo
Affiliation:
Departamento de Biología del Desarrollo, Instituto Superior de Investigaciones Biológicas (INSIBIO) y Universidad Nacional de Tucumán (UNT), Chacabuco 461, 4000, San Miguel de Tucumán, Argentina.
L.A. López
Affiliation:
Departamento de Biología del Desarrollo, Instituto Superior de Investigaciones Biológicas (INSIBIO) y Universidad Nacional de Tucumán (UNT), Chacabuco 461, 4000, San Miguel de Tucumán, Argentina.
J. Zapata Martínez
Affiliation:
Departamento de Biología del Desarrollo, Instituto Superior de Investigaciones Biológicas (INSIBIO) y Universidad Nacional de Tucumán (UNT), Chacabuco 461, 4000, San Miguel de Tucumán, Argentina.
M.C. Gramajo Bühler
Affiliation:
Departamento de Biología del Desarrollo, Instituto Superior de Investigaciones Biológicas (INSIBIO) y Universidad Nacional de Tucumán (UNT), Chacabuco 461, 4000, San Miguel de Tucumán, Argentina.
M.I. Bühler*
Affiliation:
Departamento de Biología del Desarrollo, Instituto Superior de Investigaciones Biológicas (INSIBIO) y Universidad Nacional de Tucumán (UNT), Chacabuco 461, 4000, San Miguel de Tucumán, Argentina. Departamento de Biología del Desarrollo, Instituto Superior de Investigaciones Biológicas (INSIBIO) y Universidad Nacional de Tucumán (UNT), Chacabuco 461, 4000, San Miguel de Tucumán, Argentina.
*
All correspondence to: Marta I. Bühler. Departamento de Biología del Desarrollo, Instituto Superior de Investigaciones Biológicas (INSIBIO) y Universidad Nacional de Tucumán (UNT), Chacabuco 461, 4000, San Miguel de Tucumán, Argentina. Fax: +54 381 4248025. e-mail: mbuhler@fbqf.unt.edu.ar

Summary

Dehydroleucodine (DhL), a sesquiterpenic lactone, was isolated and purified from aerial parts of Artemisia douglasiana Besser, a medicinal herb used in Argentina. DhL is an alpha-methylene butyro-gamma-lactone ring connected to a seven-membered ring fused to an exocyclic alpha,beta-unsaturated cyclopentenone ring

It has been previously shown that DhL selectively induces a dose-dependent transient arrest in G2 of both meristematic cells and vascular smooth muscle cells. Treatment with DhL induces an inhibition of spontaneous and progesterone-induced maturation in a dose-dependent manner in Bufo arenarum fully grown oocytes arrested at G2, at the beginning of meiosis I. However, the nature of the mechanisms involved in the process is still unknown.

The aim of this work was to analyse whether DhL's alpha-methylene-gamma-lactone function is responsible for the inhibition effect on meiosis reinitiation of Bufo arenarum oocytes as well as some of the transduction pathways that could be involved in this effect using a derivative of DhL inactivated for alpha-methylenelactone, the 11,13-dihydro-dehydroleucodine (2H-DhL).

The use of 2H-DhL in the maturation promoting factor (MPF) amplification experiments by injection of both cytoplasm with active MPF and of germinal vesicle content showed results similar to the ones obtained with DhL, suggesting that the hydrogenated derivative would act in a similar way to DhL.

Pretreatment with DhL or 2H-DhL did not affect the percentage of germinal vesicle breakdown (GVBD) induced by H89, a protein kinase A (PKA) inhibitor, which suggests that these lactones would act on another step of the signalling pathway that induces MPF activation. The fact that both DhL and 2H-Dhl inhibit GVBD induced by okadaic acid microinjection suggests that they could act on the activity of the Myt1 kinase. This idea is supported by the experiments of injection of GV contents in which an inhibitory effect of these lactones on GVBD was also observed.

Our results indicate that the inhibitory effect on meiosis progression of DhL does not depend only on the activity of the alpha-methylenelactone function, as its hydrogenated derivative, 2H-DhL, in which this function has been inactivated, causes similar effects on amphibian oocytes. However, 2H-DhL was less active than DhL as higher doses were required to obtain a significant inhibition. On the other hand, the analysis of the participation of certain mediators in some of the signalling pathways leading to MPF activation suggests that the Myt1 kinase could be a target of these lactones, while cdc25 phosphatase would not be affected. Besides, the PKA inhibition assays indicate that these lactones would act earlier in the signalling pathways.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beekman, A.C., Woerdenbag, H.J., van Uden, W., Pras, N., Konings, A.W., Wikström, H.V. & Schmidt, T.J. (1997). Structure–cytotoxicity relationships of some helenanolide-type sesquiterpene lactones. J. Nat. Prod. 60, 252–7.CrossRefGoogle ScholarPubMed
Bialojan, C. & Takai, A. (1988). Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem. J. 256, 283–90.CrossRefGoogle ScholarPubMed
Bühler, M.I., & Petrino, T.R. (1983). Simplified technique for the observation of aster in amphibians eggs stratified by centrifugation. Microscopie 40, 1112.Google ScholarPubMed
Cruzado, M., Castro, C., Fernández, D., Gómez, L, Roque, M., Giordano, O.E. & López, L.A. (2005). Dehydroleucodine inhibits vascular smooth muscle cell proliferation in G2 phase. Cell Mol. Biol. 51, 525–30.Google ScholarPubMed
Dekel, N. (2005). Cellular biochemical and molecular mechanisms regulating oocytes maturation. Mol. Cell. Endocrinol. 29, 1925.CrossRefGoogle Scholar
de Vantéry Arrighi, C., Campana, A. & Schorderet-Slatkine, S. (2000). A role for the MEK–MAPK pathway in okadaic acid-induced meiotic resumption of incompetent growing mouse oocytes. Biol. Reprod. 63, 658–65.CrossRefGoogle ScholarPubMed
Duckworth, B.C., Weaver, J.S. & Rudeman, J.V. (2002). G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc. Natl. Acad. Sci. USA 99, 16794–9.CrossRefGoogle ScholarPubMed
Fortune, J.E., Concannon, P.W. & Hansel, W. (1975). Ovarian progesterone levels during in vitro oocyte maturation and ovulation in Xenopus laevis. Biol. Reprod. 13, 561–7.CrossRefGoogle ScholarPubMed
Furuno, N., Kawasaki, A. & Sagata, N. (2003). Expression of cell-cycle regulators during Xenopus oogenesis. Gene Expr. Patterns 3, 165–8.CrossRefGoogle ScholarPubMed
Galas, S., Barakat, H., Dorée, M. & Picard, A. (1993). A nuclear factor required for specific translation of cyclin B may control the timing of first meiotic cleavage in starfish oocytes. Mol. Biol. Cell 4, 1295–306.CrossRefGoogle ScholarPubMed
Gavin, A.C., Ni Ainle, A., Chierici, E., Jones, M. & Nebreda, A.R. (1999). A p90(rsk) mutant constitutively interacting with MAP kinase uncouples MAP kinase from p34(cdc2)/cyclin B activation in Xenopus oocytes. Mol. Biol. Cell 10, 2971–86.CrossRefGoogle ScholarPubMed
Gautier, J. & Maller, J.L. (1991). Cyclin B in Xenopus oocytes, implications for the mechanism of pre-MPF activation. EMBO J. 10, 177–82.CrossRefGoogle ScholarPubMed
Giordano, O.S., Guerreiro, E., Pestchanker, M.J., Guzmán, J., Pastor, D. & Guardia, T. (1990). The gastric cytoprotective effect of several sesquiterpene lactones. J. Nat. Prod. 53, 803–9.CrossRefGoogle ScholarPubMed
Giordano, O.S., Pestchanker, M.J., Guerreiro, E., Saad, J.R., Enriz, R.D., Rodriguez, A.M., Jauregui, E.A., Guzman, J., Maria, A.O. & Wendel, G.H. (1992). Structure-activity relationship in the gastric cytoprotective effect of several sesquiterpene lactones. J. Med. Chem. 35, 2452–8.CrossRefGoogle ScholarPubMed
Goris, J., Hermann, J., Hendrix, P., Ozon, R. & Merlevede, W. (1986). Okadaic acid, a specific protein phosphatase inhibitor, induces maturation and MPF formation in Xenopus laevis oocytes. FEBS Lett. 245, 91–4.CrossRefGoogle Scholar
Grieco, D., Avvedimento, E.V. & Gottesma, M.E. (1994). A role for cAMP-dependent protein kinase in early embryonic divisions. Proc. Natl. Acad. Sci. USA 91, 9896–900.CrossRefGoogle ScholarPubMed
Han, S.J. & Conti, M. (2006). New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate. Cell Cycle 5, 227–31.CrossRefGoogle Scholar
Heinrich, M., Robles, M., West, J.E., Ortiz de Montellano, B.R. & Rodriguez, E. (1998). Ethnopharmacology of Mexican asteraceae (Compositae). Annu. Rev. Pharmacol. Toxicol. 38, 539–65.CrossRefGoogle ScholarPubMed
Huchon, D., Ozon, R. & Demaille, J.G. (1981). Protein phosphatase-1 is involved in Xenopus oocyte maturation. Nature 294, 358–9.CrossRefGoogle ScholarPubMed
Inoue, D. & Sagata, N. (2005). The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs. EMBO J. 24, 1057–67.CrossRefGoogle ScholarPubMed
Izumi, T. & Maller, J.L. (1993). Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Mol. Biol. Cell 4, 1337–50.CrossRefGoogle ScholarPubMed
Karaïskou, A., Jessus, C., Brassac, T. & Ozon, R. (1999). Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J. Cell Sci. 112, 3747–56.CrossRefGoogle ScholarPubMed
Karaiskou, A., Leprêtre, A.C., Pahlavan, G., Du Pasquier, D., Ozon, R. & Jessus, C. (2004). Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes. Development 131, 1543–52.CrossRefGoogle ScholarPubMed
Kovo, M., Kandli-Cohen, M., Ben-Haim, M., Galiani, D., Carr, D.W. & Dekel, N. (2006). An active protein kinase A (PKA) is involved in meiotic arrest of rat growing oocytes. Reproduction 132, 3343.CrossRefGoogle ScholarPubMed
Minshull, J., Murray, A., Colman, A. & Hunt, T. (1991). Xenopus oocytes maturation does not require new cyclin synthesis. J. Cell Biol. 114, 767–72.CrossRefGoogle Scholar
Lin, Y.P., & Schuetz, A.W. (1985) Spontaneous oocyte maturation in Rana pipiens: estrogen and follicle wall involvement. Gamete Res. 12, 1128.CrossRefGoogle Scholar
López, M.E., Giordano, O.S. & López, L.A. (2002). Sesquiterpene lactone dehydroleucodine selectively induces transient arrest in G2 in Allium cepa root meristematic cells. Protoplasma 219, 82–8.Google ScholarPubMed
Maller, J.L. & Krebs, E.G. (1977). Progesterone-stimulated meiotic cell division in Xenopus oocytes: induction by regulatory subunit of adenosine 3′5′-monophosphate-dependent protein kinase. J. Biol. Chem. 252, 1712–8.CrossRefGoogle ScholarPubMed
Nakajo, N., Yoshitome, S., Iwashita, J., Iida, M., Uto, K., Ueno, S., Okamoto, K. & Sagata, N.Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev. 14, 328.CrossRefGoogle Scholar
Noh, S.J. & Han, J.K. (1998). Inhibition of the adenylyl cyclase and activation of the phosphatidylinositol pathway in oocytes through expression of serotonin receptors does not induce oocyte maturation. J. Exp. Zool. 280, 4556.3.0.CO;2-H>CrossRefGoogle Scholar
Ookada, K., Hisanaga, S., Okano, T. & Kishimoto, T. (1992). Relocation and distinct subcellular localization of p34cdc2–cyclin B complex at meiosis reinitiation in starfish oocytes. EMBO J. 11, 1763–72.CrossRefGoogle Scholar
Okumura, E., Sekiai, T., Hisanaga, S., Tachibana, K. & Kishimoto, T. (1996). Initial triggering of M-phase in starfish oocytes: a possible novel component of maturation-promoting factor besides cdc2 kinase. J. Cell Biol. 132, 125–35.CrossRefGoogle ScholarPubMed
Palmer, A., Gavin, A.C. & Nebreda, A.R. (1998). A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J. 17, 5037–47.CrossRefGoogle ScholarPubMed
Patra, D., Wang, S.X., Kumagai, A. & Dunphy, W.G. (1999). The Xenopus Suc1/Cks protein promotes the phosphorylation of G2/M regulators. J. Biol. Chem. 274, 36839–42.CrossRefGoogle Scholar
Penissi, A.B., Fogal, T.H., Guzmán, J.A. & Piezzi, R.S. (1998). Gastroduodenal mucosal protection induced by dehydroleucodine: mucus secretion and role of monoamines. Dig. Dis. Sci. 43, 791–8.CrossRefGoogle ScholarPubMed
Perdiguero, E. & Nebreda, A. (2004) Regulation of cdc25 activity during the meiotic G2/M transition. Cell Cycle 3, 733–7.CrossRefGoogle ScholarPubMed
Peter, M., Labbé, J.C., Dorée, M. & Mandart, E. (2002). A new role for Mos in Xenopus oocyte maturation: targeting Myt1 independently of MAPK. Development 129, 2129–39.CrossRefGoogle ScholarPubMed
Picard, A., Labbé, J.C., Barakat, H., Cavadore, J.C. & Dorée, M. (1991). Okadaic acid mimics a nuclear component required for cyclin B–cdc2 kinase microinjection to drive starfish oocytes into M phase. J. Cell Biol. 115, 337–44.CrossRefGoogle ScholarPubMed
Prigent, C. & Hunt, T. (2004). Oocyte maturation and cell cycle control: a farewell symposium for Pr Marcel Dorée. Biol. Cell 96, 181–5.CrossRefGoogle ScholarPubMed
Qian, Y.W., Erikson, E., Taieb, F.E. & Maller, J.L. (2001). The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B–Cdc2 in Xenopus oocytes. Mol. Biol. Cell. 12, 1791–9.CrossRefGoogle ScholarPubMed
Robles, M., Aregullin, M., West, J. & Rodriguez, E. (1995). Recent studies on the zoopharmacognosy, pharmacology and neurotoxicology of sesquiterpene lactones. Planta Med. 61, 199203.CrossRefGoogle ScholarPubMed
Sánchez Toranzo, G., Bonilla, F., Zelarayán, L., Oterino, J. & Bühler, M.I. (2006). Activation of maturation promoting factor in Bufo arenarum oocytes: injection of mature cytoplasm and germinal vesicle contents. Zygote 14, 112.Google Scholar
Sánchez Toranzo, G., Giordano, O., López, L. & Bühler, M.I. (2007). Effect of dehydroleucodine on meiosis reinitiation in Bufo arenarum denuded oocytes. Zygote 15, 183–7.CrossRefGoogle ScholarPubMed
Schmitt, A. & Nebreda, A.R. (2002). Inhibition of Xenopus oocyte meiotic maturation by catalytically inactive protein kinase A. Proc. Natl. Acad. Sci. USA 99, 4361–6.CrossRefGoogle ScholarPubMed
Schmit, A. & Nebreda, A.R. (2002) Signalling pathways in oocyte meiotic maturation. J. Cell Sci. 115, 2457–9.CrossRefGoogle Scholar
Schuetz, A.W. (1985). Local control mechanisms during oogenesis and folliculogenesis. In: Developmental Biology, vol. 1 (ed. Browder, L.W.), pp. 383, New York: Plenum Press.Google Scholar
Strausfeld, U., Labée, J.C., Fesquet, D., Cavadore, J.C., Picard, A., Sadhu, K., Russell, P. & Dorée, M. (1991). Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature (Lond.) 351, 242–5.CrossRefGoogle ScholarPubMed
Wang, J., Cao, W.L. & Liu, X.J. (2006). Protein kinase A (PKA)-restrictive and PKA-permissive phases of oocyte maturation. Cell Cycle 5, 213–7.CrossRefGoogle ScholarPubMed
Wasserman, W.J. & Masui, Y. (1975). Effects of cycloheximide on a cytoplasmic factor initiating meiotic maturation in Xenopus oocytes. Exp. Cell Res. 91, 381–8.CrossRefGoogle Scholar
Wells, N.J., Watanabe, N., Tokusumi, T., Jiang, W., Verdecia, M.A. & Hunter, T. (1999). The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G2/M progression. J. Cell Sci. 112, 3361–71.CrossRefGoogle Scholar
Zelarayán, L., Oterino, J. & Bühler, M.I. (1995) Spontaneous maturation in Bufo arenarum oocytes: follicle wall involvement, respiratory activity and seasonal influences. J. Exp. Zool. 272, 356–62.CrossRefGoogle ScholarPubMed
Zelarayán, L., Oterino, J. & Bühler, M.I. (1996) Spontaneous maturation in Bufo arenarum oocytes: participation of protein kinase C. Zygote 4, 257–62.CrossRefGoogle ScholarPubMed
Zelarayán, L., Oterino, J., Sánchez Toranzo, G. & Bühler, M.I. (2000). Involvement of purines and phosphoinositides in spontaneous and progesterone-induced nuclear maturation of Bufo arenarum oocytes. J. Exp. Zool. 287, 151–7.3.0.CO;2-S>CrossRefGoogle ScholarPubMed