Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-10T16:41:42.565Z Has data issue: false hasContentIssue false

First evidence of a “Barrovian”-type metamorphic regime in the Ross orogen of the Byrd Glacier area, central Transantarctic Mountains

Published online by Cambridge University Press:  02 August 2007

F.M. Talarico*
Affiliation:
Dipartimento di Scienze della Terra, Università di Siena, 53100 Siena, Italy
E. Stump
Affiliation:
Department of Geological Sciences, Arizona State University, Tempe, AZ 85287-1404, USA
B.F. Gootee
Affiliation:
Department of Geological Sciences, Arizona State University, Tempe, AZ 85287-1404, USA
K.A. Foland
Affiliation:
Department of Geological Sciences, The Ohio State University, Columbus, OH 43210, USA
R. Palmeri
Affiliation:
Museo Nazionale dell'Antartide, Sez. Scienze della Terra, Università di Siena, 53100 Siena, Italy
W.R. Van Schmus
Affiliation:
Department of Geology, University of Kansas, Lawrence, KS 66045, USA
P.K. Brand
Affiliation:
Department of Geological Sciences, Arizona State University, Tempe, AZ 85287-1404, USA
C.A. Ricci
Affiliation:
Dipartimento di Scienze della Terra, Università di Siena, 53100 Siena, Italy Museo Nazionale dell'Antartide, Sez. Scienze della Terra, Università di Siena, 53100 Siena, Italy
*
*Corresponding author:talarico@unisi.it

Abstract

The Selborne Group comprises two metamorphic rock units, the muscovite±dolomite bearing Madison Marble and the biotite-muscovite±quartz-calcite Contortion Schist, which contains thick lenses of variably deformed metabasalts and metaconglomerates. Petrological and structural data indicate a polyphase metamorphic evolution including: i) an early stage of upper greenschist regional metamorphism (P = ~0.15–0.3 GPa; T = ~380–450°C), ii) prograde metamorphism during D1 up to amphibolite facies peak conditions (P = 0.58–0.8 GPa, T = ~560–645°C), iii) syn-D2 unloading-cooling retrograde metamorphism, iv) a post-D2 contact metamorphic overprint at variable T between 450 and 550°C and ~0.2 GPa connected to the emplacement of granitic plutons and felsic dyke swarms. Geochronological data constrain the polyphase syn-D1/D2 evolution between ~ 510 and 492 Ma. A similar metamorphic path, including a medium P stage but at lower T conditions, is documented in greenschist facies metabasalts within the Byrd Group in the Mount Dick area. The metamorphic pattern and close lithostratigraphic matching between Selborne Group and Byrd Group sharply contrast with the high-grade Horney Formation that is exposed north of the Byrd Glacier and corroborate the hypothesis that the Byrd Glacier discontinuity marks a first-order crustal tectonic boundary crossing the Ross orogen.

Type
EARTH SCIENCES
Copyright
Copyright © Antarctic Science Ltd 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anovitz, L.M. & Essene, E.J. 1987. Phase equilibria in the system CaCO3-MgCO3-FeCO3. Journal of Petrology, 28, 389414.CrossRefGoogle Scholar
Barker, A.J. 1990. Introduction to metamorphic textures and microstructures. Glasgow: Blakie, 161 pp.Google Scholar
Berman, R.G. 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445522.CrossRefGoogle Scholar
Borg, S.G., DePaolo, D.J. & Smith, B.M. 1990. Isotopic structure and tectonics of the central Transantarctic Mountains. Journal of Geophysical Research, 95, 66476667.CrossRefGoogle Scholar
Borg, S.G., DePaolo, D.J., Wendlandt, E.D. & Drake, T.G. 1989. Studies of granites and metamorphic rocks, Byrd Glacier area. Antarctic Journal of the United States, 24(5), 1921.Google Scholar
Brown, E.H. 1977. The crossite content of Ca-amphibole as a guide to pressure of metamorphism. Journal of Petrology, 18, 5372.CrossRefGoogle Scholar
Bucher, K. & Frey, M. 1994. Petrogenesis of metamorphic rocks. Berlin: Springer, 318 pp.CrossRefGoogle Scholar
Cobbold, P.R. & Quinquis, H. 1980. Development of sheath folds in shear regimes. Journal of Structural Geology, 2, 119126.CrossRefGoogle Scholar
Debrenne, F. & Kruse, P.D. 1986. Shackleton Limestone archaeocyaths. Alcheringa, 10, 235278.CrossRefGoogle Scholar
Encarnacion, J.P. & Grunow, A.M. 1996. Changing magmatic and tectonic styles along the paleo-Pacific margin of Gondwana and the onset of early Paleozoic magmatism in Antarctica. Tectonics, 15, 13251341.CrossRefGoogle Scholar
Evans, B.W., Shaw, D.M. & Haughton, D.R. 1969. Scapolite stoichiometry. Contributions to Mineralogy and Petrology, 24, 293305.CrossRefGoogle Scholar
Felder, R.P. & Faure, G. 1990. Age and petrogenesis of the granitic basement rocks, Brown Hills, Transantarctic Mountains. Zentralblatt fur Geologie und Palaontologie, 1, 4562.Google Scholar
Fyfe, W.S., Turner, F.J. & Verhoogen, J. 1958. Metamorphic reactions and metamorphic facies. Geological Society of America Memoir, 73, 259 pp.Google Scholar
Gerya, T.V., Perchuk, L.L., Triboulet, C., Audren, C. & Sez'ko, A.I. 1997. Petrology of the Tumanshet Zonal Metamorphic Complex, Eastern Sayan. Petrology, 47, 165185.Google Scholar
Ghose, S. 1981. Subsolidus reactions and microstructures in amphiboles. Reviews in Mineralogy, 9A, 325372.Google Scholar
Goodge, J.W. & Dallmeyer, R.D. 1992. 40Ar/39Ar mineral age constraints on the Paleozoic tectonothermal evolution of high-grade basement rocks within the Ross orogen, central Transantarctic Mountains. Journal of Geology, 100, 91106.CrossRefGoogle Scholar
Goodge, J.W. & Dallmeyer, R.D. 1996. Contrasting thermal evolution within the Ross orogen, Antarctica. Evidence from mineral 40Ar/39Ar ages. Journal of Geology, 104, 435458.CrossRefGoogle Scholar
Goodge, J.W., Walker, N.W. & Hansen, V.L. 1993. Neoproterozoic–Cambrian basement-involved orogenesis within the Antarctic margin of Gondwana. Geology, 21, 3740.2.3.CO;2>CrossRefGoogle Scholar
Goodge, J.W., Myrow, P., Williams, I.S. & Bowring, S.A. 2002. Age and provenance of the Beardmore Group, Antarctica: constraints on Rodinia supercontinent breakup. Journal of Geology, 110, 393406.CrossRefGoogle Scholar
Gootee, B. 2002. Geology of the Cambrian Byrd Group, Byrd Glacier area, Antarctica. MS thesis, Arizona State University, 134 pp. [Unpublished.].Google Scholar
Gootee, B. & Stump, E. 2005. Depositional environments of the Byrd Group, Byrd Glacier area: a Cambrian record of sedimentation, tectonism, and magmatism. In Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F., eds. Antarctic contributions to Global Earth Science. Berlin: Springer, 191194.Google Scholar
Grindley, G.W. 1963. The geology of the Queen Alexandra range, Beardmore Glacier, Ross Dependency, Antarctica; with notes on the correlation of Gondwana sequences. New Zealand Journal of Geology and Geophysics, 6, 307347.CrossRefGoogle Scholar
Grindley, G.W. & Laird, M.G. 1969. Geology of the Shackleton Coast. Antarctic Map Folio Series, Folio 12, XIV.Google Scholar
Grindley, G.W. & McDougall, I. 1969. Age and correlation of the Nimrod Group and other Precambrian rock units in the central Transantarctic Mountains, Antarctica. New Zealand Journal of Geology and Geophysics, 12, 391411.CrossRefGoogle Scholar
Haskell, T.R., Kennett, J.P. & Prebble, W.M. 1965. Geology of the Brown Hills and Darwin Mountains, southern Victoria Land, Antarctica. Transactions of the Royal Society of New Zealand, Geology, 2, 231248.Google Scholar
Hill, D. 1964. Archaeocyatha from the Shackleton Limestone in the Ross system, Nimrod Glacier area, Antarctica. Transactions of the Royal Society of New Zealand, Geology, 2, 137146.Google Scholar
Holland, T.J.B. 1980. The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. American Mineralogist, 65, 129134.Google Scholar
Holland, T.J.B. & Blundy, J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 443447.CrossRefGoogle Scholar
Holland, T.J.B. & Powell, R. 1990. An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology, 8, 89124.CrossRefGoogle Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Labotka, T.C. 1991. Chemical and physical properties of fluids. Reviews in Mineralogy, 26, 4397.Google Scholar
Laird, M.G. 1963. Geomorphology and stratigraphy of the Nimrod Glacier–Beaumont Bay region, southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 6, 465484.CrossRefGoogle Scholar
Laird, M.G. 1964. Petrography of rocks from the Nimrod Glacier–Starshot Glacier region, Ross Dependency. In Adie, R.J., ed. Antarctic geology. Amsterdam: North Holland, 463472.Google Scholar
Laird, M.G., Mansergh, G.D. & Chappell, J.M.A. 1971. Geology of the central Nimrod Glacier area, Antarctica. New Zealand Journal of Geology and Geophysics, 14, 427468.CrossRefGoogle Scholar
Landing, E., Bowring, S.A., Davidek, K.L., Westrop, S.R., Geyer, G. & Heldmaier, W. 1998. Duration of the Early Cambrian: U–Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences, 35, 329338.CrossRefGoogle Scholar
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, F.C., Kisch, H.J., Krichovichev, V.G., Linthout, K., Lair, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.M.N., Ungaretti, L., Whittaker, E.J.W. & Youzhi, G. 1997. Nomenclature of amphiboles: report of the subcommitee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. American Mineralogist, 82, 10191037.Google Scholar
Ludwig, K.R. 1988. Pbdat: a computer program for processing Pb–U–Th isotope data, version 1.24. United States Geological Survey, open-file 88542.Google Scholar
Ludwig, K.R. 2001. Isoplot/Ex (rev. 2.49), A geochronological toolkit for Microsoft Excel. Berkeley, CA: University of California, Berkeley Geochronology Center Special Publication No. 1a, 55 pp.Google Scholar
Massonne, H.J. 1991. High-pressure, low-temperature metamorphism of pelitic and other protoliths based on experiments in the system K2O-MgO-Al2O3-SiO2-H2O. Habilitationsschrift, Ruhr University, Bochum, Germany, 172 pp. [Unpublished.].Google Scholar
Massonne, H.J. & Schreyer, W. 1987. Phengite geobarometry based on the limiting assemblage with K–feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology, 96, 212224.CrossRefGoogle Scholar
Maruyama, S., Liou, J.G. & Suzuki, K. 1983. The peristerite gap in low-grade metamorphic rocks. Contributions to Mineralogy and Petrology, 81, 268276.CrossRefGoogle Scholar
Myrow, P.M., Pope, M., Goodge, J.W., Fischer, W. & Palmer, A.R. 2002. Depositional history of pre-Devonian strata and timing of Ross orogenic tectonism in the central Transantarctic Mountains, Antarctica. Geological Society of America Bulletin, 114, 10701088.2.0.CO;2>CrossRefGoogle Scholar
Palmer, A.R. & Rowell, A.J. 1995. Early Cambrian trilobites from the Shackleton Limestone of the central Transantarctic Mountains. Paleontological Society Memoir, 45, 28 pp.Google Scholar
Papike, J.J., Cameron, K.C. & Baldwin, K. 1974. Amphiboles and pyroxenes: characterisation of other than quadrilateral components and estimation of ferric iron from microprobe data. Geological Society of America, Abstracts with Programs, 6, 10531054.Google Scholar
Powell, R. & Holland, T.J.B. 1988. An internally consistent thermodinamic data set with uncertainties and correlations. III. Application methods, worked examples and a computer program. Journal of Metamorphic Geology, 6, 173204.CrossRefGoogle Scholar
Rees, M.N. & Rowell, A.J. 1991. The pre-Devonian paleozoic clastics of the central Transantarctic Mountains: stratigraphy and depositional setting. In Thompson, M.R.A., Crame, J.A. & Thomson, J.W., eds. Geological evolution of Antarctica. Cambridge: Cambridge University Press, 187192.Google Scholar
Rees, M.N., Rowell, A.J. & Pratt, B.R. 1985. The Byrd Group of the Holyoke Range, central Transantarctic Mountains. Antarctic Journal of the United States, 20(5), 35.Google Scholar
Rees, M.N., Rowell, A.J. & Cole, E.D. 1988. Aspects of the late Proterozoic and Paleozoic geology of the Churchill Mountains, southern Victoria Land. Antarctic Journal of the United States, 23(5), 2325.Google Scholar
Rowell, A.J., Rees, M.N., Cooper, R.A. & Pratt, B.R. 1988. Early Paelozoic history of the central Transantarctic Mountains: evidence from the Holyoake Range, Antarctica. New Zealand Journal of Geology and Geophysics, 31, 397404.CrossRefGoogle Scholar
Skinner, D.N.B. 1964. A summary of the geology between Byrd and Starshot Glaciers, south Victoria Land. In Adie, R.J., ed. Antarctic geology. Amsterdam: North Holland, 284292.Google Scholar
Skinner, D.N.B. 1965. Petrographic criteria of the rock units between the Byrd and Starshot glaciers, south Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 8, 292303.CrossRefGoogle Scholar
Spear, F.S. 1993. Metamorphic phase equilibria and pressure-temperature-time paths., Washington, DC: Mineralogical Society of America Monograph Series 1, 799 pp.Google Scholar
Simpson, A.L. & Cooper, A.F. 2002. Geochemistry of the Darwin Glacier region granitoids, southern Victoria Land. Antarctic Science, 14, 425426.CrossRefGoogle Scholar
Stacey, J.S. & Kramers, J.D. 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Sciences Letters, 26, 207251.CrossRefGoogle Scholar
Steiger, R.H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 28, 359362.CrossRefGoogle Scholar
Stump, E. 1980. Two episodes of deformation at Mt Madison, Antarctica. Antarctic Journal of the United States, 15(5), 1314.Google Scholar
Stump, E. 1995. The Ross orogen of the Transantarctic Mountains. Cambridge: Cambridge University Press, 284 pp.Google Scholar
Stump, E., Gootee, B. & Talarico, F. 2005. Tectonic model for development of the Byrd Glacier discontinuity and surrounding regions of the Transantarctic Mountains during the Neoproterozoic–early Paleozoic. In Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F., eds. Antarctic contributions to Global Earth Science. Berlin: Springer, 181190.Google Scholar
Stump, E., Gootee, B., Talarico, F., Van Schmus, W.R., Brand, P.K., Foland, K.A. & Fanning, C.M. 2004. Correlation of Byrd and Selborne groups, with implications for the Byrd Glacier discontinuity, central Transantarctic Mountains. New Zealand Journal of Geology and Geophysics, 47, 157171.CrossRefGoogle Scholar
Talarico, F., Palmeri, R., Stump, E., Gootee, B. & Ricci, C.A. 2003. Metamorphic evolution of the Selborne Group, and implications for the Byrd Glacier discontinuity (central Transantarctic Mountains, Antarctica). 9th International Symposium on Antarctic Earth Sciences, Potsdam (Germany), Abstract volume, 313314.Google Scholar
Triboulet, C. 1992. The (Na–Ca) amphibole-albite-chlorite-epidote-quartz geothermobarometer in the system S-A-F-M-C-N-H2O. 1. An empirical calibration. Journal of Metamorphic Geology, 10, 545556.CrossRefGoogle Scholar
Young, D.J. & Ryburn, R.J. 1968. The geology of Buckley and Darwin nunataks, Beardmore Glacier, Ross Dependency, Antarctica. New Zealand Journal of Geology and Geophysics, 11, 922939.CrossRefGoogle Scholar
Zenk, M. & Schulz, B. 2004. Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineralogical Magazine, 68, 769786.CrossRefGoogle Scholar
Supplementary material: File

Talarico Supplementary Material

Supplementary data.doc

Download Talarico Supplementary Material(File)
File 199.2 KB