Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T06:30:46.542Z Has data issue: false hasContentIssue false

Antidromic latency of magnocellular, parvocellular, and koniocellular (Blue-ON) geniculocortical relay cells in marmosets

Published online by Cambridge University Press:  07 April 2014

SOON KEEN CHEONG*
Affiliation:
ARC Centre of Excellence in Vision Science, The University of Sydney Eye Hospital Campus, Sydney, New South Wales 2001, Australia. Discipline of Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, New South Wales 2006, Australia.
ALEXANDER NICOLAAS JOHANNES PIETERSEN
Affiliation:
ARC Centre of Excellence in Vision Science, The University of Sydney Eye Hospital Campus, Sydney, New South Wales 2001, Australia. Discipline of Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, New South Wales 2006, Australia.

Abstract

We studied the functional connectivity of cells in the lateral geniculate nucleus (LGN) with the primary visual cortex (V1) in anesthetized marmosets (Callithrix jacchus). The LGN sends signals to V1 along parallel visual pathways called parvocellular (P), magnocellular (M), and koniocellular (K). To better understand how these pathways provide inputs to V1, we antidromically activated relay cells in the LGN by electrically stimulating V1 and measuring the conduction latencies of P (n = 7), M (n = 14), and the “Blue-ON” (n = 5) subgroup of K cells (K-BON cells). We found that the antidromic latencies of K-BON cells were similar to those of P cells. We also measured the response latencies to high contrast visual stimuli for a subset of cells. We found the LGN cells that have the shortest latency of response to visual stimulation also have the shortest antidromic latencies. We conclude that Blue color signals are transmitted directly to V1 from the LGN by K-BON cells.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, E.D. & Matthews, R. (1927). The action of light on the eye: Part II. The processes involved in retinal excitation. The Journal of Physiology 64, 279301.CrossRefGoogle ScholarPubMed
Arden, G.B. & Weale, R.A. (1954). Variations of latent period of vision. Proceedings of the Royal Society B: Biological Sciences 142, 258267.Google ScholarPubMed
Beck, P.D. & Kaas, J.H. (1998). Thalamic connections of the dorsomedial visual area in primates. The Journal of Comparative Neurology 396, 381398.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Bishop, P.O., Burke, W. & Davis, R. (1962). Single-unit recording from antidromically activated optic radiation neurones. The Journal of Physiology 162, 432450.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Wassle, H. (1974). The morphological types of ganglion cells of the domestic cat’s retina. The Journal of Physiology 240, 397419.CrossRefGoogle ScholarPubMed
Bullier, J. & Kennedy, H. (1983). Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey. Experimental Brain Research 53, 168172.CrossRefGoogle ScholarPubMed
Casagrande, V.A. (1994). A third parallel visual pathway to primate area V1. Trends in Neurosciences 17, 305310.CrossRefGoogle ScholarPubMed
Casagrande, V.A., Yazar, F., Jones, K.D. & Ding, Y. (2007). The morphology of the koniocellular axon pathway in the macaque monkey. Cerebral Cortex 17, 23342345.CrossRefGoogle ScholarPubMed
Chatterjee, S. & Callaway, E.M. (2003). Parallel colour-opponent pathways to primary visual cortex. Nature 426, 668671.CrossRefGoogle ScholarPubMed
Cheong, S.K., Tailby, C., Martin, P.R., Levitt, J.B. & Solomon, S.G. (2011). Slow intrinsic rhythm in the koniocellular visual pathway. Proceedings of the National Academy of Sciences of the United States of America 108, 1465914663.CrossRefGoogle ScholarPubMed
Cheong, S.K., Tailby, C., Solomon, S.G. & Martin, P.R. (2013). Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. The Journal of Neuroscience 33, 68646876.CrossRefGoogle ScholarPubMed
Cottaris, N.P. & De Valois, R.L. (1998). Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature 395, 896900.CrossRefGoogle ScholarPubMed
Dacey, D.M. & Lee, B.B. (1994). The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.CrossRefGoogle ScholarPubMed
Dacey, D.M. & Packer, O.S. (2003). Colour coding in the primate retina: Diverse cell types and cone-specific circuitry. Current Opinion in Neurobiology 13, 421427.CrossRefGoogle ScholarPubMed
De Valois, R.L., Cottaris, N.P., Elfar, S.D., Mahon, L.E. & Wilson, J.A. (2000). Some transformations of color information from lateral geniculate nucleus to striate cortex. Proceedings of the National Academy of Sciences of the United States of America 97, 49975002.CrossRefGoogle ScholarPubMed
Derrington, A.M. & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. The Journal of Physiology 357, 219240.CrossRefGoogle ScholarPubMed
Diamond, I.T., Conley, M., Itoh, K. & Fitzpatrick, D. (1985). Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus. The Journal of Comparative Neurology 242, 584610.CrossRefGoogle ScholarPubMed
Engel, S., Zhang, X. & Wandell, B. (1997). Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 388, 6871.CrossRefGoogle ScholarPubMed
Feig, S. & Harting, J.K. (1994). Ultrastructural studies of the primate lateral geniculate nucleus: Morphology and spatial relationships of axon terminals arising from the retina, visual cortex (area 17), superior colliculus, parabigeminal nucleus, and pretectum of Galago crassicaudatus. The Journal of Comparative Neurology 343, 1734.CrossRefGoogle ScholarPubMed
Fitzpatrick, D., Itoh, K. & Diamond, I.T. (1983). The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). The Journal of Neuroscience 3, 673702.CrossRefGoogle ScholarPubMed
Fries, W. (1981). The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey. Proceedings of the Royal Society of London Series B, Biological Sciences 213, 7386.Google Scholar
Fritsches, K.A. & Rosa, M.G. (1996). Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus). The Journal of Comparative Neurology 372, 264282.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Fuortes, M.G., Frank, K. & Becker, M.C. (1957). Steps in the production of motoneuron spikes. The Journal of General Physiology 40, 735752.CrossRefGoogle ScholarPubMed
Gasser, H.S. & Erlanger, J. (1927). The role played by the sizes of the constituent fibers of a nerve trunk in determining the form of its action potential wave. American Journal of Physiology 80, 522547.CrossRefGoogle Scholar
Gegenfurtner, K.R. (2003). Cortical mechanisms of colour vision. Nature Reviews Neuroscience 4, 563572.CrossRefGoogle ScholarPubMed
Harting, J.K., Glendenning, K.K., Diamond, I.T. & Hall, W.C. (1973). Evolution of the primate visual system: Anterograde degeneration studies of the tecto-pulvinar system. American Journal of Physical Anthropology 38, 383392.CrossRefGoogle ScholarPubMed
Hashemi-Nezhad, M., Blessing, E.M., Dreher, B. & Martin, P.R. (2008). Segregation of short-wavelength sensitive (“blue”) cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets. Vision Research 48, 26042614.CrossRefGoogle ScholarPubMed
Henderickson, A.E., Wilson, J.R. & Ogren, M.P. (1978). The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates. The Journal of Comparative Neurology 182, 123136.CrossRefGoogle Scholar
Hendry, S.H. & Yoshioka, T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264, 575577.CrossRefGoogle ScholarPubMed
Horwitz, G.D., Chichilnisky, E.J. & Albright, T.D. (2007). Cone inputs to simple and complex cells in V1 of awake macaque. Journal of Neurophysiology 97, 30703081.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1972). Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. The Journal of Comparative Neurology 146, 421450.CrossRefGoogle ScholarPubMed
Irvin, G.E., Norton, T.T., Sesma, M.A. & Casagrande, V.A. (1986). W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus). Brain Research 362, 254270.CrossRefGoogle ScholarPubMed
Jayakumar, J., Roy, S., Dreher, B., Martin, P.R. & Vidyasagar, T.R. (2013). Multiple pathways carry signals from short-wavelength-sensitive (‘blue’) cones to the middle temporal area of the macaque. The Journal of Physiology 591, 339352.CrossRefGoogle Scholar
Johnson, E.N., Hawken, M.J. & Shapley, R. (2004). Cone inputs in macaque primary visual cortex. Journal of Neurophysiology 91, 25012514.CrossRefGoogle ScholarPubMed
Kaske, A., Dick, A. & Creutzfeldt, O.D. (1991). The local domain for divergence of subcortical afferents to the striate and extrastriate visual cortex in the common marmoset (Callithrix jacchus): A multiple labelling study. Experimental Brain Research 84, 254265.CrossRefGoogle Scholar
Kennedy, H. & Bullier, J. (1985). A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey. The Journal of Neuroscience 5, 28152830.CrossRefGoogle ScholarPubMed
Krauskopf, J. (1973). Contributions of the primary chromatic mechanisms to the generation of visual evoked potentials. Vision Research 13, 22892298.CrossRefGoogle Scholar
Lachica, E.A. & Casagrande, V.A. (1988). Development of primate retinogeniculate axon arbors. Visual Neuroscience 1, 103123.CrossRefGoogle ScholarPubMed
Lachica, E.A. & Casagrande, V.A. (1992). Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: Axon morphology. The Journal of Comparative Neurology 319, 141158.CrossRefGoogle Scholar
Lee, R.J., Mollon, J.D., Zaidi, Q. & Smithson, H.E. (2009). Latency characteristics of the short-wavelength-sensitive cones and their associated pathways. Journal of Vision 9, 5117.CrossRefGoogle ScholarPubMed
Lennie, P. (1981). The physiological basis of variations in visual latency. Vision Research 21, 815824.CrossRefGoogle ScholarPubMed
Lennie, P., Krauskopf, J. & Sclar, G. (1990). Chromatic mechanisms in striate cortex of macaque. The Journal of Neuroscience 10, 649669.CrossRefGoogle ScholarPubMed
Levick, W.R. & Zacks, J.L. (1970). Responses of cat retinal ganglion cells to brief flashes of light. The Journal of Physiology 206, 677700.CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240, 740749.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1982). Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proceedings of the National Academy of Sciences of the USA 79, 60986101.CrossRefGoogle ScholarPubMed
Lund, J.S. (1973). Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). The Journal of Comparative Neurology 147, 455496.CrossRefGoogle ScholarPubMed
Malpeli, J.G. & Schiller, P.H. (1978). Lack of blue OFF-center cells in the visual system of the monkey. Brain Research 141, 385389.CrossRefGoogle ScholarPubMed
Marrocco, R.T. (1976). Sustained and transient cells in monkey lateral geniculate nucleus: Conduction velocites and response properties. Journal of Neurophysiology 39, 340353.CrossRefGoogle ScholarPubMed
Martin, P.R., White, A.J.R., Goodchild, A.K., Wilder, H.D. & Sefton, A.E. (1997). Evidence that blue-on cells are part of the third geniculocortical parthway in primates. The European Journal of Neuroscience 9, 15361541.CrossRefGoogle Scholar
Maunsell, J.H., Ghose, G.M., Assad, J.A., McAdams, C.J., Boudreau, C.E. & Noerager, B.D. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience 16, 114.CrossRefGoogle ScholarPubMed
Maunsell, J.H. & Gibson, J.R. (1992). Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology 68, 13321344.CrossRefGoogle ScholarPubMed
McKeefry, D.J., Parry, N.R. & Murray, I.J. (2003). Simple reaction times in color space: The influence of chromaticity, contrast, and cone opponency. Investigative Ophthalmology & Visual Science 44, 22672276.CrossRefGoogle ScholarPubMed
Mullen, K.T., Thompson, B. & Hess, R.F. (2010). Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: An fMRI study. Journal of Vision 10, 13.CrossRefGoogle ScholarPubMed
Norton, T.T. & Casagrande, V.A. (1982). Laminar organization of receptive-field properties in lateral geniculate nucleus of bush baby (Galago crassicaudatus). Journal of Neurophysiology 47, 715741.CrossRefGoogle ScholarPubMed
Norton, T.T., Casagrande, V.A., Irvin, G.E., Sesma, M.A. & Petry, H.M. (1988). Contrast-sensitivity functions of W-, X-, and Y-like relay cells in the lateral geniculate nucleus of bush baby, Galago crassicaudatus. Journal of Neurophysiology 59, 16391656.CrossRefGoogle Scholar
Nowak, L.G., Munk, M.H., Girard, P. & Bullier, J. (1995). Visual latencies in areas V1 and V2 of the macaque monkey. Visual Neuroscience 12, 371384.CrossRefGoogle ScholarPubMed
Rabin, J., Switkes, E., Crognale, M., Schneck, M.E. & Adams, A.J. (1994). Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing. Vision Research 34, 26572671.CrossRefGoogle ScholarPubMed
Roy, S., Jayakumar, J., Martin, P.R., Dreher, B., Saalmann, Y.B., Hu, D. & Vidyasagar, T.R. (2009). Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus. The European Journal of Neuroscience 30, 15171526.CrossRefGoogle ScholarPubMed
Sakai, H. & Woody, C.D. (1988). Relationships between axonal diameter, soma size, and axonal conduction velocity of HRP-filled, pyramidal tract cells of awake cats. Brain Research 460, 17.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Malpeli, J.G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology 41, 788797.CrossRefGoogle ScholarPubMed
Schnapf, J.L., Nunn, B.J., Meister, M. & Baylor, D.A. (1990). Visual transduction in cones of the monkey macaca fascicularis. The Journal of Physiology 427, 681713.CrossRefGoogle ScholarPubMed
Sherman, S.M., Wilson, J.R., Kaas, J.H. & Webb, S.V. (1976). X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Science 192, 475477.CrossRefGoogle ScholarPubMed
Silveira, L.C., Lee, B.B., Yamada, E.S., Kremers, J., Hunt, D.M., Martin, P.R. & Gomes, F.L. (1999). Ganglion cells of a short-wavelength-sensitive cone pathway in new world monkeys: Morphology and physiology. Visual Neuroscience 16, 333343.CrossRefGoogle ScholarPubMed
Sincich, L.C., Park, K.F., Wohlgemuth, M.J. & Horton, J.C. (2004). Bypassing V1: A direct geniculate input to area MT. Nature Neuroscience 7, 11231128.CrossRefGoogle ScholarPubMed
Smithson, H.E. & Mollon, J.D. (2004). Is the S-opponent chromatic sub-system sluggish? Vision Research 44, 29192929.CrossRefGoogle ScholarPubMed
Solomon, S.G. (2002). Striate cortex in dichromatic and trichromatic marmosets: Neurochemical compartmentalization and geniculate input. The Journal of Comparative Neurology 450, 366381.CrossRefGoogle ScholarPubMed
Solomon, S.G. & Lennie, P. (2005). Chromatic gain controls in visual cortical neurons. The Journal of Neuroscience 25, 47794792.CrossRefGoogle ScholarPubMed
Spatz, W.B. (1979). The retino-geniculo-cortical pathway in callithrix. II. The geniculo-cortical projection. Experimental Brain Research 36, 401410.CrossRefGoogle ScholarPubMed
Stepniewska, I., Qi, H.X. & Kaas, J.H. (1999). Do superior colliculus projection zones in the inferior pulvinar project to MT in primates?. The European Journal of Neuroscience 11, 469480.CrossRefGoogle Scholar
Stockman, A., Langendorfer, M., Smithson, H.E. & Sharpe, L.T. (2006). Human cone light adaptation: From behavioral measurements to molecular mechanisms. Journal of Vision 6, 11941213.CrossRefGoogle ScholarPubMed
Szmajda, B.A., Buzas, P., Fitzgibbon, T. & Martin, P.R. (2006). Geniculocortical relay of blue-off signals in the primate visual system. Proceedings of the National Academy of Sciences of the USA 103, 1951219517.CrossRefGoogle ScholarPubMed
Tailby, C., Cheong, S.K., Pietersen, A.N., Solomon, S.G. & Martin, P.R. (2012). Colour and pattern selectivity of receptive fields in superior colliculus of marmoset monkeys. Journal of Physiology 590, 40614077.CrossRefGoogle ScholarPubMed
Tailby, C., Solomon, S.G. & Lennie, P. (2008 a). Functional asymmetries in visual pathways carrying S-cone signals in macaque. The Journal of Neuroscience 28, 40784087.CrossRefGoogle ScholarPubMed
Tailby, C., Szmajda, B.A., Buzas, P., Lee, B.B. & Martin, P.R. (2008 b). Transmission of blue (S) cone signals through the primate lateral geniculate nucleus. The Journal of Physiology 586, 59475967.CrossRefGoogle Scholar
Valberg, A., Lee, B.B. & Tigwell, D.A. (1986). Neurones with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus. Vision Research 26, 10611064.CrossRefGoogle ScholarPubMed
Warner, C.E., Goldshmit, Y. & Bourne, J.A. (2010). Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei. Frontiers in Neuroanatomy 4, 8.Google ScholarPubMed
White, A.J., Wilder, H.D., Goodchild, A.K., Sefton, A.J. & Martin, P.R. (1998). Segregation of receptive field properties in the lateral geniculate nucleus of a new-world monkey, the marmoset callithrix jacchus. Journal of Neurophysiology 80, 20632076.CrossRefGoogle ScholarPubMed
Wiesel, T.N. & Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology 29, 11151156.CrossRefGoogle ScholarPubMed
Wikler, K.C. & Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. The Journal of Neuroscience 10, 33903401.CrossRefGoogle ScholarPubMed
Yeh, T., Lee, B.B. & Kremers, J. (1995 a). Temporal response of ganglion cells of the macaque retina to cone-specific modulation. Journal of the Optical Society of America A 12, 456464.CrossRefGoogle ScholarPubMed
Yeh, T., Lee, B.B., Kremers, J., Cowing, J.A., Hunt, D.M., Martin, P.R. & Troy, J.B. (1995 b). Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus). The Journal of Neuroscience 15, 78927904.CrossRefGoogle ScholarPubMed
Yoshida, K. & Benevento, L.A. (1981). The projection from the dorsal lateral geniculate nucleus of the thalamus to extrastriate visual association cortex in the macaque monkey. Neuroscience Letters 22, 103108.CrossRefGoogle ScholarPubMed
Yukie, M. & Iwai, E. (1981). Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys. The Journal of Comparative Neurology 201, 8197.CrossRefGoogle Scholar