Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T00:54:09.469Z Has data issue: false hasContentIssue false

Mechanisms of Action of Neural Grafts in the Limbic System

Published online by Cambridge University Press:  18 September 2015

György Buzsáki*
Affiliation:
Department of Neurosciences, University of California at San Diego, La Jolla, California
Fred H. Gage
Affiliation:
Department of Neurosciences, University of California at San Diego, La Jolla, California
*
Department of Neurosciences, M-024, UCSD, La Jolla, CA 92093, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review summarizes the range of possible mechanisms of action of neuronal grafts in the central nervous system. It aims to illustrate the capacity and limitations of the transplanted tissue in the promotion of neurological recovery after experimental surgical insults.

Type
Special Features
Copyright
Copyright © Canadian Neurological Sciences Federation 1988

References

REFERENCES

1.Bjòrklund, A, Stenevi, U. Reformation of the severed septohippo-campal cholinergic pathway in the adult rat by transplanted septal neurons. Cell Tissue Res 1977; 185: 289302.CrossRefGoogle ScholarPubMed
2.Bjòrklund, A, Gage, FH, Stenevi, U, et al. Intracerebral grafting of neuronal cell suspensions. VI. Survival and growth of intrahip-pocampal implants of septal cell suspensions. Acta Physiol Scand, (Suppl) 1983; 522: 4858.Google ScholarPubMed
3.Vanderwolf, CH. Hippocampal electrical activity and voluntary movement in the rat. Clin Neurophysiol 1969; 26: 407418.CrossRefGoogle ScholarPubMed
4.Petsche, H, Stumpf, C, Gogolák, G. The significance of the rabbit’s septum as a relay station between the midbrain and the hippo¬campus. The control of hippocampal arousal activity by septum cells. Electroencephalogr Clin Neurophysiol 1962; 14: 202211.CrossRefGoogle Scholar
5.Vanderwolf, CH, Baker, GB. Evidence that serotonin mediates noncholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res 1986; 374: 342356.CrossRefGoogle ScholarPubMed
6.Buzsáki, G. Hippocampal sharp-waves: their origin and significance. Brain Res 1986; 398: 242252.CrossRefGoogle ScholarPubMed
7.Buzsáki, G, Leung, LS, Vanderwolf, CH. Cellularbasis of hippocampal EEG in the behaving rat. Brain Res Rev 1983; 6: 139171.CrossRefGoogle Scholar
8.Suzuki, SS, Smith, GK. Spontaneous EEG spikes in the normal hippocampus. I. Behavioral correlates, laminar profiles and bilateral synchrony. Electroencephalogr Clin Neurophysiol 1987; 67: 348359.CrossRefGoogle ScholarPubMed
9.Buzsáki, G, Ponomareff, GL, Bayardo, F, et al. Neuronal activity in the subcortically denervated hippocampus: a chronic model for epilepsy. J Neurosci, submitted.Google Scholar
10.Buzsáki, G, Gage, FH. Absence of long-term potentiation in the subcortically deafferented hippocampus, submitted.Google Scholar
11.Dunnett, SB, Low, WC, Iversen, SD, et al.Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res 1982; 251: 335348.CrossRefGoogle ScholarPubMed
12.Gage, FH, Bjòrklund, A, Stenevi, U, et al. Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science 1984; 225: 533536.CrossRefGoogle ScholarPubMed
13.Low, WC, Lewis, PR, Bunch, ST, et al. Functional recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampal lesions. Nature 1982; 300: 260262.CrossRefGoogle ScholarPubMed
14.Nilsson, OG, Shapiro, ML, Gage, FH, et al. Spatial learning and memory following fimbria-fornix transection and grafting of fetal septal neurons to the hippocampus. Exp Brain Res 1987; 67: 195215.CrossRefGoogle ScholarPubMed
15.Buzsáki, G, Gage, FH, Czopf, J, et al. Restoration of rhythmic slow activity in the subcortically denervated hippocampus by fetal CNS transplants. Brain Res 1987; 400: 334347.CrossRefGoogle ScholarPubMed
16.Gage, FH, Wictorin, K, Fisher, W, et al. Retrograde cell changes in medial septum and diagonal band following fimbria-fornix transection: Quantitative temporal analysis. Neurosci 1986; 19: 241255.CrossRefGoogle ScholarPubMed
17.Amarai, DG, Kurz, J. An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 1985; 240: 3759.CrossRefGoogle Scholar
18.Gage, FH, Bjòrklund, A, Stenevi, U. A neuronal survival factor in the adult hippocampal formation is released by denervation. Nature 1984; 308: 637639.CrossRefGoogle ScholarPubMed
19.Nieto-Sampedro, M, Lewis, ER, Cotman, CW, et al. Brain injury causes time-dependent increases in neurotrophic activity at the lesion site. Science 1982; 221: 860861.CrossRefGoogle Scholar
20.Hefti, F, Weiner, WJ. Nerve growth factor and Alzheimer’s disease. Ann Neurol 1986; 20: 275281.CrossRefGoogle ScholarPubMed
21.Thoenen, H, Barde, YA. Physiology of nerve growth factor. Physiol Rev 1980; 3: 7795.Google Scholar
22.Kromer, LF. Nerve growth factor treatment after brain injury prevents neuronal death. Science 1987; 235: 214217.CrossRefGoogle ScholarPubMed
23.Williams, LR, Varon, S, Peterson, GM, et al. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection. Proc Natl Acad Sci 1986; 83: 92319235.CrossRefGoogle ScholarPubMed
24.Buzsáki, G, Bickford, RG, Varon, S, et al. Reconstruction of the damaged septohippocampal circuitry by a combination of fetal grafts and transient NGF infusion. Soc Neurosci Abstr 1987.Google Scholar
25.Large, TH, Bodary, SC, Clegg, DO, et al. Nerve growth factor gene expression in the developing rat brain. Science 1986; 234: 352355.CrossRefGoogle ScholarPubMed
26.Buzsáki, G, Gage, FH. Neural grafts: possible mechanisms of action. In: Petit, TL, ed. Neural plasticity: a lifespan approach. New York: Alan R. Liss, Inc. 1988.Google Scholar
27.Buzsáki, G, Freund, TF, Bjòrklund, A, Gage, FH. Restoration and deterioration of function by brain grafts in the septohippocampal system. Progr Brain Res (in press).Google Scholar
28.Buzsáki, G, Ponamareff, G, Bayardo, F, et al. Suppression and induction of epileptic activity by neuronal grafts, submitted.Google Scholar
29.Barry, DI, Kikvadze, I, Brundin, P, et al. Grafted noradrenergic neurons suppress seizure development in kindling-induced epilepsy. Proc Natl Acad Sci 1987; 84: 87128715.CrossRefGoogle ScholarPubMed
30.Buzsáki, G, Gage, FH, Kellényi, L, et al. Behavioral dependence of the electrical activity of intracerebrally transplanted fetal hippocampus. Brain Res 1987; 400: 321333.CrossRefGoogle ScholarPubMed
31.Buzsáki, G, Czopf, J, Kondákor, I, et al. Cellular activity of intracerebrally transplanted fetal hippocampus during behavior. Neurosci 1987; 22: 871883.CrossRefGoogle ScholarPubMed
32.Bliss, TVP, Lømo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path. J Physiol (London) 1973; 232: 331356.CrossRefGoogle ScholarPubMed
33.Buzsáki, G, Eidelberg, E. Direct afferent excitation and long-term potentiation of hippocampal interneurons. J Neurophysiol 1982; 48: 597607.CrossRefGoogle ScholarPubMed
34.Fox, SE, Ranck, JB Jr.Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp Brain Res 1981; 41: 399410.CrossRefGoogle ScholarPubMed
35.Frotscher, M, Zimmer, J. GABAergic non-pyramidal neurons in intracerebral transplants of the rat hippocampus and fasciadentata: a combined light and electronmicroscopic immunocytochemical study. J Comp Neurol 1987; 259: 266276.CrossRefGoogle Scholar
36.Somogyi, P, Smith, AD, Nunzi, MG, et al. Glutamate decarboxylase immunoreactivity in the hippocampus of the cat. Distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J Neurosci 1983; 3: 14501468.CrossRefGoogle Scholar
37.Somogyi, P, Nunzi, MG, Gorio, A, et al. A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res. 1983; 259: 137142.CrossRefGoogle ScholarPubMed
38.Freund, TF, Buzsáki, G. Alterations in excitatory and GABAergic inhibitory connections in hippocampal transplants. Neurosci (in press).Google Scholar
39.O’Keefe, J, Nadel, L. The hippocampus as a cognitive map, 1978; Clarendon Press, Oxford.Google Scholar
40.Olton, DS, Becker, JT, Handelman, GE. Hippocampus, space and memory. Behav Brain Sci 1979; 2: 313365.CrossRefGoogle Scholar
41.Eckerman, DA, Gordon, WA, Edwards, JD, et al. Effects of scopolamine, pentobarbital and amphetamine on radial arm maze performance in the rat. Pharmacol Biochem Behav 1980; 12: 416419.CrossRefGoogle ScholarPubMed
42.Sutherland, RJ, Whishaw, IQ, Regeher, JC. Cholinergic receptor blockade impairs spatial localization using distal cues in the rat. J Comp Physiol Psychol 1982; 96: 563573.CrossRefGoogle ScholarPubMed
43.Morris, R. Development of a water-maze procedure for studying learning in the rat. J Neurosci Methods 1984; 11: 4760.CrossRefGoogle ScholarPubMed
44.Jarrard, L. Selective hippocampal lesions and behavior: Implications for current research and theorizing. In: Isaacson, RS, Pribram, KM, eds. “The Hippocampus”, New York; Plenum; 1986.Google Scholar
45.Dasheiff, RM, McNamara, JO. Intradentate colchicine retards the development of amygdala kindling. Ann Neurol 1982; 11: 347352.CrossRefGoogle ScholarPubMed
46.Sutuia, T, Harrison, C, Steward, O. Chronic epietogenesis induced by kindling of the entorhinal cortex: the role of the dentate gyrus. Brain Res 1986; 385: 291299.CrossRefGoogle Scholar
47.Ribak, CE, Khan, SU. The effects of knife cuts of hippocampal pathways on epileptic activity in the seizure-sensitive gerbil. Brain Res 1987; 418: 146151.CrossRefGoogle ScholarPubMed
48.Winson, J, Abzug, C. Neuronal transmission through hippocampal pathways dependent on behavior. J Neurophysiol 1978; 41: 716732.CrossRefGoogle ScholarPubMed
49.Gage, FH, Buzsáki, G, Nilsson, O, et al. Grafts of fetal cholinergic neurons to the deafferented hippocampus. In: Seil, FJ, Herbert, E, Carlson, BM, eds. Progress in Brain Research, Elsevier Science Publishers, 1987; 335347.Google Scholar
50.Goddard, GV. Component properties of memory machines: Hebb revisited. In: Jusczyk, PW, Klein, RM, eds. The nature of thought: Essays in honour of D.O. Hebb. Lawrence Erlbaum, Hillsdale, N.J. 1980.Google Scholar
51.McNaughton, BL, Morris, RGM. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosci 1987; 10: 408415.CrossRefGoogle Scholar
52.Teyler, TJ, Discenna, P. Long-term potentiation. Ann Rev Neurosci 1987; 10: 131161.CrossRefGoogle ScholarPubMed
53.Segal, M, Richter, G. Involvement of serotonin in hippocampal plasticity. In: Haas, HL, Buzsáki, G, eds. Synaptic plasticity in the hippocampus. Berlin: Springer 1988: 5557.CrossRefGoogle Scholar