Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T13:30:42.127Z Has data issue: false hasContentIssue false

The cohomological equation over dynamical systems arising from Delone sets

Published online by Cambridge University Press:  26 May 2010

DANIEL CORONEL*
Affiliation:
Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Campus San Joaquín, Avenida Vicuña Mackenna 4860, Santiago, Chile (email: acoronel@mat.puc.cl)

Abstract

The hull Ω of an aperiodic repetitive Delone set P in ℝd is a compact metric space on which ℝd acts continuously by translation. Let G be ℝm or 𝕋m and α be a continuous G-cocycle over the dynamical system (Ω,ℝd) . In this paper we study conditions under which the cohomological equation α(ω,x)=ψ(ωx)−ψ(ω) has continuous solutions. We give a sufficient condition for general continuous G-cocycles and a necessary condition for transversally locally constant G-cocycles. These conditions are given in terms of the set of first return vectors associated with a tower system for Ω. For linearly repetitive Delone sets we give a necessary and sufficient condition for solving the cohomological equation in the class of transversally Hölder G-cocycles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aliste-Prieto, J. and Coronel, A. D.. Tower systems for linearly repetitive Delone sets. Preprint, 2010, arXiv:1003.4309.Google Scholar
[2]Bellissard, J., Benedetti, R. and Gambaudo, J.-M.. Spaces of tilings, finite telescopic approximations and gap-labeling. Comm. Math. Phys. 261(1) (2006), 141.Google Scholar
[3]Benedetti, R. and Gambaudo, J.-M.. On the dynamics of 𝔾-solenoids. Applications to Delone sets. Ergod. Th. & Dynam. Sys. 23(3) (2003), 673691.Google Scholar
[4]Bressaud, X., Durand, F. and Maass, A.. Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems. J. Lond. Math. Soc. (2) 72(3) (2005), 799816.Google Scholar
[5]Clark, A. and Sadun, L.. When size matters: subshifts and their related tiling spaces. Ergod. Th. & Dynam. Sys. 23(4) (2003), 10431057.CrossRefGoogle Scholar
[6]Clark, A. and Sadun, L.. When shape matters: deformations of tiling spaces. Ergod. Th. & Dynam. Sys. 26(1) (2006), 6986.CrossRefGoogle Scholar
[7]Cortez, M. I., Durand, F., Host, B. and Maass, A.. Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems. J. Lond. Math. Soc. (2) 67(3) (2003), 790804.CrossRefGoogle Scholar
[8]Cortez, M. I., Gambaudo, J.-M. and Maass, A.. Rotation topological factors of minimal ℤd actions on the Cantor set. Trans. Amer. Math. Soc. 359(5) (2007), 23052315.CrossRefGoogle Scholar
[9]Ghys, E.. Laminations par surfaces de Riemann. Dynamique et géométrie complexes (Lyon, 1997) (Panoramas et Synthèses, 8). Société Mathématique de France, Paris, 1999, pp. 4995, ix, xi.Google Scholar
[10]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems. With a Supplementary Chapter by Anatole Katok and Leonardo Mendoza (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995.Google Scholar
[11]Kellendonk, J.. Pattern-equivariant functions and cohomology. J. Phys. A 36(21) (2003), 57655772.Google Scholar
[12]Kellendonk, J.. Pattern equivariant functions, deformations and equivalence of tiling spaces. Ergod. Th. & Dynam. Sys. 28(4) (2008), 11531176.CrossRefGoogle Scholar
[13]Kellendonk, J. and Putnam, I. F.. The Ruelle–Sullivan map for actions of ℝn. Math. Ann. 334(3) (2006), 693711.CrossRefGoogle Scholar
[14]Lagarias, J. C. and Pleasants, P. A. B.. Local complexity of Delone sets and crystallinity. Dedicated to Robert V. Moody. Canad. Math. Bull. 45(4) (2002), 634652.CrossRefGoogle Scholar
[15]Lagarias, J. C. and Pleasants, P. A. B.. Repetitive Delone sets and quasicrystals. Ergod. Th. & Dynam. Sys. 23(3) (2003), 831867.Google Scholar
[16]Lee, J.-Y., Moody, R. V. and Solomyak, B.. Pure point dynamical and diffraction spectra. Ann. Henri Poincaré 3(5) (2002), 10031018.CrossRefGoogle Scholar
[17]Robinson, E. A. Jr. Symbolic dynamics and tilings of ℝd. Symbolic Dynamics and its Applications (Proceedings of Symposia in Applied Mathematics, 60). American Mathematical Society, Providence, RI, 2004, pp. 81119.Google Scholar
[18]Sadun, L. and Williams, R. F.. Tiling spaces are Cantor set fiber bundles. Ergod. Th. & Dynam. Sys. 23(1) (2003), 307316.CrossRefGoogle Scholar