Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T01:48:27.927Z Has data issue: false hasContentIssue false

Hierarchy, multidomain modules, and the evolution of intelligence

Published online by Cambridge University Press:  15 August 2017

Mauricio de Jesus Dias Martins
Affiliation:
Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germanymmartins@cbs.mpg.dehttps://www.researchgate.net/profile/Mauricio_Martins4 Humboldt Universität zu Berlin, Berlin School of Mind and Brain, 10117 Berlin, Germany
Laura Desirèe Di Paolo
Affiliation:
Lichtenberg-Kolleg Institute, University of Goettingen, 37075 GöttingenGermanylauradesiree.dipaolo@gmail.comhttps://sites.google.com/site/lauradesireedipaolo Leibniz ScienceCampus and Research Group Primate Social Evolution DPZ-German Primate Centre, 37077 Göttingen, Germany

Abstract

In this commentary, we support a complex, mosaic, and multimodal approach to the evolution of intelligence. Using the arcuate fasciculus as an example of discontinuity in the evolution of neurobiological architectures, we argue that the strict dichotomy of modules versus G, adopted by Burkart et al. in the target article, is insufficient to interpret the available statistical and experimental evidence.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aminoff, E., Gronau, N. & Bar, M. (2007) The parahippocampal cortex mediates spatial and nonspatial associations. Cerebral Cortex 17(7):1493–503. Available at: http://doi.org/10.1093/cercor/bhl078.CrossRefGoogle ScholarPubMed
Anderson, M. L. (2016) Précis of After Phrenology: Neural Reuse and the Interactive Brain . Behavioral and Brain Sciences 39:e120. doi: 10.1017/S0140525X15000631.CrossRefGoogle ScholarPubMed
Catani, M., Jones, D. K. & Ffytche, D. H. (2005) Perisylvian language networks of the human brain. Annals of Neurology 57(1):816. Available at: http://doi.org/10.1002/ana.20319.CrossRefGoogle ScholarPubMed
Dehaene, S., Meyniel, F., Wacongne, C., Wang, L. & Pallier, C. (2015) The Neural representation of sequences: From transition probabilities to algebraic patterns and linguistic trees. Neuron 88(1):219. Available at: http://doi.org/10.1016/j.neuron.2015.09.019.CrossRefGoogle ScholarPubMed
Fadiga, L., Craighero, L. & D'Ausilio, A. (2009) Broca's area in language, action, and music. Annals of the New York Academy of Sciences 1169(1):448–58. Available at: http://doi.org/10.1111/j.1749-6632.2009.04582.x.CrossRefGoogle ScholarPubMed
Fitch, W. T. & Martins, M. D. (2014) Hierarchical processing in music, language, and action: Lashley revisited. Annals of the New York Academy of Sciences 1316(1):87104. Available at: http://doi.org/10.1111/nyas.12406.CrossRefGoogle ScholarPubMed
Geva-Sagiv, M., Las, L., Yovel, Y. & Ulanovsky, N. (2015) Spatial cognition in bats and rats: From sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience 16(2):94108. Available at: http://doi.org/10.1038/nrn3888.CrossRefGoogle ScholarPubMed
Inoue, S. & Matsuzawa, T. (2007) Working memory of numerals in chimpanzees. Current Biology. Available at: http://doi.org/10.1016/j.cub.2007.10.027.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (2015) An alternative to domain-general or domain-specific frameworks for theorizing about human evolution and ontogenesis. AIMS Neuroscience 2(2):91104. Available at: http://doi.org/10.3934/Neuroscience.2015.2.91.CrossRefGoogle ScholarPubMed
Kumaran, D., Melo, H. L. & Düzel, E. (2012) The emergence and representation of knowledge about social and nonsocial hierarchies. Neuron 76(3):653–66. Available at: http://doi.org/10.1016/j.neuron.2012.09.035.1.CrossRefGoogle ScholarPubMed
Martins, M. D., Fischmeister, F. P., Puig-Waldmüller, E., Oh, J., Geißler, A., Robinson, S., Fitch, W. T. & Beisteiner, R. (2014) Fractal image perception provides novel insights into hierarchical cognition. NeuroImage 96:300–08. Available at: http://doi.org/10.1016/j.neuroimage.2014.03.064.CrossRefGoogle ScholarPubMed
Plakke, B., Hwang, J. & Romanski, L. M. (2015) Inactivation of primate prefrontal cortex impairs auditory and audiovisual working memory. Journal of Neuroscience 35(26):9666–75. Available at: http://doi.org/10.1523/JNEUROSCI.1218-15.2015.CrossRefGoogle ScholarPubMed
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X. & Behrens, T. E. J. (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience 11(4):426–28. Available at: http://doi.org/10.1038/nn2072.CrossRefGoogle ScholarPubMed
Scott, B. H., Mishkin, M. & Yin, P. B. (2012) Monkeys have a limited form of short-term memory in audition. Proceedings of the National Academy of Sciences USA 109(30):12237–41. Available at: http://doi.org/10.1073/pnas.1209685109.CrossRefGoogle ScholarPubMed
Seyfarth, R. M. & Cheney, D. (2014) The evolution of language from social cognition. Current Opinion in Neurobiology 28:59. Available at: http://doi.org/10.1016/j.conb.2014.04.003.CrossRefGoogle ScholarPubMed