Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T02:07:11.770Z Has data issue: false hasContentIssue false

A High-Resolution Coral-Based Δ14C Record of Surface Water Processes in the Western Mediterranean Sea

Published online by Cambridge University Press:  09 February 2016

Nadine Tisnérat-Laborde
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 UVSQ-CNRS-CEA, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
Paolo Montagna
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 UVSQ-CNRS-CEA, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France Istituto di Scienze Marine, CNR, Bologna, Italy Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA
Malcolm McCulloch
Affiliation:
UWA Ocean Institute and ARC Centre of Excellence in Coral Reef Studies, School of Earth and Environment, The University of Western Australia, Perth, Australia
Giuseppe Siani
Affiliation:
Laboratoire Interactions et Dynamique des Environnements de Surface IDES, UMR 8148 CNRS-Université Paris-Sud 11, Orsay, France
Sergio Silenzi
Affiliation:
Istituto Superiore per la Protezione e la Ricerca Ambientale, Rome, Italy
Norbert Frank
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, UMR 8212 UVSQ-CNRS-CEA, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France Institut für Umweltphysik, Universität Heidelberg, INF229, 69120 Heidelberg, Germany

Abstract

The first high-resolution time series of pre- and post-bomb radiocarbon measurements is reported for surface waters in the western Mediterranean Sea. The Δ14C record was obtained from the aragonite skeleton of Cladocora caespitosa using a 50-yr-old corallite collected in the Ligurian Sea in 1998. Laser-ablation ICP measurements of trace elements (Li/Mg and Sr/Ca) show a strong seasonal variability, enabling the chronology of the Δ14C record to be determined at annual timescales. The mean Δ14C of pre-bomb surface water is -56 ± 3%, corresponding to a reservoir age of 262 ± 29 yr. The post-bomb maximum occurs in 1972 with a Δ14C value of 90%, significantly lower than the peak of 150% observed in the North Atlantic. The dilution of the peak-amplitude of Δ14C in western Mediterranean surface waters is attributed to mixing of North Atlantic Central Water inflow with relatively depleted underlying Intermediate Mediterranean and Levantine Intermediate waters. Intensification of this mixing is observed in 1963–1964, consistent with the change in atmospheric circulation from a positive to negative NAO phase (1960–1967). The post-peak Δ14C variability is relatively limited, reflecting mainly local vertical mixing forced by wind stress.

Type
Oceanic Carbon Cycle
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, M, Bard, E, Maurice, P, Valladas, H, Duplessy, JC. 1989. 14C dating with the Gif-sur-Yvette Tandetron accelerator: status report and study of isotopic fractionation in the sputter ion source. Radiocarbon 31(3):284–91.Google Scholar
Artale, V, Astraldi, M, Buffoni, G, Gasparini, GP. 1994. The seasonal variability of the gyre-scale circulation in the northern Tyrrhenian Sea. Journal of Geophysical Research 99(C7):14,12737.CrossRefGoogle Scholar
Astraldi, M, Gasparini, GP, Sparnocchia, S. 1994. The seasonal and interannual variability in the Ligurian-Provencal Basin. Coastal and Estuarine Studies 46: 93113.CrossRefGoogle Scholar
Barnston, AG, Livezey, RE. 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review 115:1083–126.2.0.CO;2>CrossRefGoogle Scholar
Belkin, M. 2009. Rapid warming of large marine ecosysterns. Progress in Oceanography 81:207–13.Google Scholar
Béthoux, JP, Prieur, L, Nyffeler, F. 1982. The water circulation in the North-Western Mediterranean Sea, its relation with wind and atmospheric pressure. In: Nihoul, JC, editor. Hydrodynamics of Semi Enclosed Seas. Elsevier Oceanography Series 34. p 129–42.Google Scholar
Broecker, WS, Gerard, R. 1969. Natural radiocarbon in the Mediterranean Sea. Limnology and Oceanography 14:883–8.CrossRefGoogle Scholar
Broecker, WS, Peng, TH. 1982. Tracers in the Sea. Palisades: Lamont-Doherty Geological Observatory.Google Scholar
Broecker, WS, Peng, TH, Östlund, HG, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90(C4):6953–70.Google Scholar
Campana, SE. 1997. Use of radiocarbon from nuclear fallout as a dated marker in the otoliths of haddock Melanogrammus aeglefinus. Marine Ecology Progress Series 150:4956.Google Scholar
Case, DH, Robinson, LF, Auro, ME, Gagnon, AC. 2010. Environmental and biological controls on Mg and Li in deep-sea scleractinian corals. Earth and Planetary Science Letters 300:215–25.Google Scholar
Cattiaux, J, Vautard, R, Yiou, P. 2011. North-Atlantic SST amplified recent wintertime european land temperature extremes and trends. Climate Dynamics 36:2113–28.Google Scholar
Cember, R. 1989. Bomb radiocarbon in the Red Sea: a medium-scale gas exchange experiment. Journal of Geophysical Research 94(C2):2111–23.CrossRefGoogle Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, JP, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291–9.Google Scholar
Druffel ERM. 1987. Bomb radiocarbon in the Pacific: annual and seasonal timescale variations. Journal of Marine Research 45(3):667–98.Google Scholar
Druffel, ERM. 1989. Decade time scale variability of ventilation in the North Atlantic: high-precision measurements of bomb radiocarbon in banded corals. Journal of Geophysical Research 94(C3):3271–85.CrossRefGoogle Scholar
Druffel, ERM. 1996. Post-bomb radiocarbon records of surface corals from the tropical Atlantic Ocean. Radiocarbon 38(3):563–72.Google Scholar
Druffel, ERM, Griffin, S. 1993. Large variations of surface ocean radiocarbon: evidence of circulation changes in the southwestern Pacific. Journal of Geophysical Research 98(C11):20,24959.Google Scholar
Druffel, ERM, Griffin, S. 1999. Variability of surface ocean radiocarbon and stable isotopes in the southwestern Pacific. Journal of Geophysical Research 104(C10):23,60713.CrossRefGoogle Scholar
Druffel, ERM, Linick, TW. 1978. Radiocarbon in annual coral rings of Florida. Geophysical Research Letters 5(11):913–6.Google Scholar
Druffel, ERM, Griffin, S, Guilderson, TP, Kashgarian, M, Southon, J, Schrag, DP. 2001. Changes of subtropical North Pacific radiocarbon and correlation with climate variability. Radiocarbon 43(1):1525.Google Scholar
Fairhall, AW, Young, AW. 1985. Historical 14C measurements from the Atlantic, Pacific, and Indian oceans. Radiocarbon 27(3):473507.Google Scholar
Fallon, SJ, Guilderson, TP. 2008. Surface water processes in the Indonesian throughflow as documented by a high-resolution coral Δ14C record. Journal of Geophysical Research 113:C09001, doi:10.1029/2008JC004722. CrossRefGoogle Scholar
Guilderson, TP, Schrag, DP. 1998. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in E1 Niño. Science 281(5374):240–3.Google Scholar
Guilderson, T, Caldeira, K, Duffy, PB. 2000a. Radiocarbon as a diagnostic tracer in ocean and carbon cycle modeling. Global Biogeochemical Cycles 14(3):887902.Google Scholar
Guilderson, TP, Schrag, DP, Goddard, E, Kashgarian, M, Wellington, GM, Linsley, BK. 2000b. Southwest subtropical pacific surface water radiocarbon in a high-resolution coral record. Radiocarbon 42(2):249–56.Google Scholar
Guilderson, TP, Fallon, S, Moore, MD, Schrag, DP, Charles, CD. 2009. Seasonally resolved surface Δ14C variability in the Lombok Strait: a coralline perspective. Journal of Geophysical Research 114: C07029, doi:10.1029/2008JC004876.CrossRefGoogle Scholar
Hurrell, JW, Deser, C. 2009. Atlantic climate variability: the role of the North Atlantic Oscillation. Journal of Marine Systems 78(1):2841.Google Scholar
Hurrell, JW, Kushnir, Y, Ottersen, G, Visbeck, M. 2003. An overview of the North Atlantic Oscillation: climatic significance and environmental impact. Geophysical Monograph American Geophysical Union 134:135.Google Scholar
Josey, SA, Somot, S, Tsimplis, M. 2011. Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange. Journal of Geophysical Research 116: C02032, doi:10.1029/2010JC006685.CrossRefGoogle Scholar
Kalish, JM, Nydal, R, Nedreaas, KH, Burr, GS, Eine, GL. 2001. A time history of pre- and post-bomb radiocarbon in the Barents Sea derived from Arcto-Norwegian cod otoliths. Radiocarbon 43(2B):843–55.Google Scholar
Konishi, K, Tanaka, T, Sakanoue, M. 1982. Secular variation of radiocarbon concentration in sea water: sclerochonological approach. Presented at the Fourth International Coral Reef Symposium. Google Scholar
Kružić, P, Požar-Domac, A. 2003. Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536.Google Scholar
Levin, I, Kromer, B. 1997. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.Google Scholar
Levin, I, Graul, R, Trivett, NBA. 1995. Long-term observation of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus B 47(1–2):2334.Google Scholar
Levitus, S, Boyer, TP. 1994. World Ocean Atlas 1994. Volume 4, Temperature, NAOO Atlas NESDIS. Silver Springs: National Oceanic and Atmospheric Administration. 129 p.Google Scholar
Makrogiannis, TJ, Sahsamanoglou, HS. 1990. Time variation of the mean sea level pressure over the major Mediterranean area. Theoretical and Applied Climatology 41:149–56.CrossRefGoogle Scholar
McCulloch, M, Taviani, M, Montagna, P, Lopez-Correa, M, Remia, A, Mortimer, G. 2010. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas. Earth and Planetary Science Letters 298:143–52.Google Scholar
Millot, C. 1991. Mesoscale and seasonal variabilities of the circulation in the western Mediterranean. Dynamics of Atmospheres and Oceans 15:179214.Google Scholar
Millot, C, Taupier-Letage, I. 2005. Circulation in the Mediterranean Sea. The Handbook of Environmental Chemistry 5(K):2666, doi:10.1007/b107143.Google Scholar
Montagna, P, McCulloch, M, Mazzoli, C, Silenzi, S, Odorico, . 2007. The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: high-resolution (-weekly) trace element systematics. Quaternary Science Reviews 26:441–62.Google Scholar
Montagna, P, Silenzi, S, Devoti, S, Mazzoli, C, McCulloch, M, Scicchitano, G, Taviani, M. 2008. Climate reconstructions and monitoring in the Mediterranean Sea: A review on some recently discovered high-resolution marine archives. Rendiconti Lincei 19:121–40.Google Scholar
Montagna, P, López Correa, M, Rüggeberg, A, McCulloch, M, Rodolfo-Metalpa, R, Ferrier-Pagès, C, Freiwald, A, Goldstein, S, Henderson, G, Mazzoli, C, Russo, S, Silenzi, S, Taviani, M, Trotter, J. 2009. Li/Mg ratios in shallow and deep-sea coral exoskeleton as a new temperature proxy. Presented at the AGU Fall Meeting, 14–18 December 2009, San Francisco, USA.Google Scholar
Morri, C, Peirano, A, Bianchi, CN, Sassarini, M. 1994. Present-day bioconstructions of the hard coral, Cladocora caespitosa (L.) (Anthozoa, Scleractinia), in the eastern Ligunan Sea (NW Mediterranean). Biologia Marina Mediterranea 1:371–2.Google Scholar
Nozaki, Y, Rye, DM, Turekian, KK, Dodge, RE. 1978. A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral. Geophysical Research Letters 5(10):825–8.CrossRefGoogle Scholar
Nydal, R, Gislefoss, JS. 1996. Further application of bomb 14C as a tracer in the atmosphere and ocean. Radiocarbon 38(3):389406.Google Scholar
Nydal, R, Gulliksen, S, Lövseth, K, Skogseth, F. 1984. Bomb 14C in the ocean surface 1966–1981. Radiocarbon 26(1):745.CrossRefGoogle Scholar
Papadopoulos, V, Josey, SA, Bartzokas, A, Somot, S, Ruiz, S, Drakopoulou, P. 2012. Large-scale atmospheric circulation favoring deep- and intermediate-water formation in the Mediterranean Sea. Journal of Climate 25(18):6079–91.CrossRefGoogle Scholar
Peirano, A, Morri, C, Bianchi, CN. 1999. Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Marine Ecology Progress Series 185:195201.Google Scholar
Peirano, A, Morri, C, Bianchi, CN, Aguirre, J, Antonioli, F, Calzetta, G, Carobene, L, Mastronuzzi, G, Orrù, P. 2004. The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Global and Planetary Change 40:195200.Google Scholar
Pinardi, N, Arneri, E, Crise, A, Ravaioli, M, Zavatarelli, M. 2006. The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. In: Robinson, AR, Brink, K, editors. The Sea. Cambridge: Harvard University Press. p 1243–330.Google Scholar
Reimer, PJ, McCormac, FG. 2002. Marine radiocarbon reservoir corrections for the Mediterranean and Aegean Seas. Radiocarbon 44(1):159–66.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, WJ, Bertrand, C, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hughen, KA, Kromer, B, McCormac, FG, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004a. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Rixen, M, Beckers, JM, Levitus, S, Antonov, J, Boyer, T, Maillard, C, Fichaut, M, Balopoulos, E, Iona, S, Dooley, H, Garcia, MJ, Manca, B, Giorgetti, A, Manzella, G, Mikhailov, N, Pinardi, N, Zavatarelli, . 2005. The western Mediterranean deep water: a proxy for climate change. Geophysical Research Letters 32: L12608, doi:10.1029/2005GL022702.CrossRefGoogle Scholar
Rodgers, KB, Aumont, O, Madec, G, Menkes, C, Blanke, B, Monfray, P, Orr, JC, Schrag, DP. 2004. Radiocarbon as a thermocline proxy for the eastern equatorial Pacific. Geophysical Research Letters 31(14): L14314, doi:10.1029/2004GLO19764.Google Scholar
Sahsamanoglou, HS, Makrogiannis, TJ. 1992. Temperature trends over the Mediterranean region, 1950–88. Theoretical and Applied Climatology 45:183–92.CrossRefGoogle Scholar
Sammari, C, Millot, C, Prieur, L. 1995. Aspects of the seasonal and mesoscale variabilities of the Northern current in the western Mediterranean Sea inferred from the PROLIG-2 and PROS-6 experiments. Deep-Sea Research I 42(6):893917.CrossRefGoogle Scholar
Severinghaus, JP, Broecker, WS, Peng, TH, Bonani, G. 1996. Transect along 24°N latitude of 14C in dissolved inorganic carbon in the subtropical North Atlantic ocean. Radiocarbon 38(3):407–14.CrossRefGoogle Scholar
Sherwood, OA, Edinger, EN, Guilderson, TP, Ghaleb, B, Risk, M, Scott, DB. 2008. Late Holocene radiocarbon variability in Northwest Atlantic slope waters. Earth and Planetary Science Letters 275:146–53.Google Scholar
Siani, G, Paterne, M, Arnold, M, Bard, E, Metivier, B, Tisnérat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42(2):271–80.Google Scholar
Siani, G, Paterne, M, Michel, E, Sulpizio, R, Sbrana, A, Arnold, M, Haddad, G. 2001. Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum. Science 294(5548):1917–20.Google Scholar
Silenzi, S, Bard, E, Montagna, P, Antonioli, F. 2005. Isotopic records in a non-topical coral (Cladocora caespitosa) from the Mediterranean Sea: evidence of a new high-resolution climate archive. Global and Planetary Change 49:94120.Google Scholar
Sparnocchia, S, Picco, P, Manzella, G, Ribotti, A, Copello, S, Brasey, P. 1995. Intermediate water formation in the Ligurian Sea. Oceanologica Acta 18(2):151–62.Google Scholar
Stuiver, M, Östlund, HG. 1983. GEOSECS Indian Ocean and Mediterranean radiocarbon. Radiocarbon 25(1):129.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP Radiocarbon 40(3):1041–83.Google Scholar
Taupier-Letage, I, Millot, C. 1986. General hydrodynamical features in the Ligurian Sea inferred from the DYOME experiment. Oceanologica Acta 9:119–31.Google Scholar
Tisnérat-Laborde, N. 2010. Variations du Δ14C dans l'océan de surface de l'Atlantique Nord-est au cours des 200 dernières années [PhD thesis]. Université Paris-Sud XI, Orsay, France. 189 p.Google Scholar
Tisnérat-Laborde, N, Poupeau, JJ, Tannau, JF, Paterne, M. 2001. Development of a semi-automated system for routine preparation of carbonate sample. Radiocarbon 43(2A):299304.Google Scholar
Tisnérat-Laborde, N, Paterne, M, Métivier, B, Arnold, M, Yiou, P, Blamart, D, Raynaud, S. 2010. Variability of the northeast Atlantic sea surface Δ14C and marine reservoir age and the North Atlantic Oscillation (NAO). Quaternary Science Reviews 29:2633–46.Google Scholar
Toggweiler, JR, Dixon, K, Bryan, K. 1989. Simulations of radiocarbon in a coarse-resolution world ocean model 1. Steady state prebomb distributions. Journal of Geophysical Research 94(C6):8217–64.Google Scholar
Toggweiler, JR, Dixon, K, Broecker, WS. 1991. The Peru upwelling and ventilation of the South Pacific thermocline. Journal of Geophysical Research 96(C11):20,46797.Google Scholar
Trigo, IF, Bigg, GR, Davies, TD. 2002. Climatology of cyclogenesis mechanisms in the Mediterranean. Monthly Weather Review 130:549–69.Google Scholar
Trotter, J, Montagna, P, McCulloch, M, Silenzi, S, Reynaud, S, Mortimer, G, Martin, S, Ferrier-Pagès, C, Gattuso, JP, Rodolfo-Metalpa, R. 2011. Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth and Planetary Science Letters 303: 163–73.CrossRefGoogle Scholar
Weidman, CR, Jones, GA. 1993. A shell-derived time history of bomb 14C on Georges Bank and its Labrador Sea implications. Journal of Geophysical Research 98(C8):14,57788.Google Scholar
Zibrowius, H. 1980. Les Scléractiniaires de la Méditerranée et de l'Atlantique nord-oriental. Mémoires de l'Institut Océanographique (Monaco) 11:1284.Google Scholar