Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-16T21:03:29.161Z Has data issue: false hasContentIssue false

Applications of Radiocarbon Dating Method

Published online by Cambridge University Press:  18 July 2016

Irka Hajdas*
Affiliation:
Ion Beam Physics, ETH Zurich, Schafmattstr. 20, 8093 Zurich, Switzerland. Email: hajdas@phys.ethz.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main force driving technical development of the radiocarbon dating technique is the wide spectrum of applications that cross interdisciplinary boundaries of Earth and social sciences. This paper provides a very brief overview of some of the many applications of 14C analysis to various studies of human origin and migration, cultures and history, past and present environment, and the human body itself.

Type
Applications, Developments, and Historical Perspectives
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Arnold, JR, Libby, WF. 1949. Age determinations by radiocarbon content: checks with samples of known age. Science 110(2869):678–80.Google Scholar
Arslanov, KA, Svezhentsev, YS. 1993. An improved method for radiocarbon dating fossil bones. Radiocarbon 35(3):387–91.Google Scholar
Bachrach, BS. 1971. Frozen tombs of Siberia: the Pazyryk burials of Iron Age horsemen. American Historical Review 76(3):754.Google Scholar
Barber, EJW. 1992. Prehistoric Textiles: The Development of Cloth in the Neolithic and Bronze Ages with Special Reference to the Aegean. Princeton: Princeton University Press. 508 p.Google Scholar
Beyerle, U, Rueedi, J, Leuenberger, M, Aeschbach-Hertig, W, Peeters, F, Kipfer, R, Dodo, A. 2003. Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 kyr BP derived from groundwater. Geophysical Research Letters 30(4):1173, doi: 10.1029/2002GL016310.Google Scholar
Bonani, G, Ivy, SD, Hajdas, I, Niklaus, TR, Suter, M. 1994. AMS 14C age determinations of tissue, bone and grass samples from the Ötztal Ice Man. Radiocarbon 36(2):247–50.Google Scholar
Bond, G, Heinrich, H, Broecker, W, Labeyrie, L, McManus, J, Andrews, J, Huon, S, Jantschik, R, Clasen, S, Simet, C, Tedesco, K, Klas, M, Bonani, G, Ivy, S. 1992. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the Last Glacial period. Nature 360(6401):245–9.Google Scholar
Bondevik, S, Mangerud, J, Birks, HH, Gulliksen, S, Reimer, P. 2006. Changes in North Atlantic radiocarbon reservoir ages during the Allerød and Younger Dryas. Science 312(5779):1514–7.CrossRefGoogle ScholarPubMed
Broecker, WS, Hemming, S. 2001. Climate swings come into focus. Science 294(5550):2308–9.Google Scholar
Broecker, WS, Schulert, A, Olson, EA. 1959. Bomb carbon-14 in human beings. Science 130(3371):331–2.Google Scholar
Broecker, WS, Peng, T-H, Stuiver, M. 1978. An estimate of the upwelling rate in the equatorial Atlantic based on the distribution of bomb radiocarbon. Journal of Geophysical Research 83(C12):6179–86.Google Scholar
Broecker, WS, Peng, T-H, Ostlund, G, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90(C4):6953–70.Google Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171–7.Google Scholar
Clottes, J, Chauvet, JM, Bruneldeschamps, E, Hillaire, C, Daugas, JP, Arnold, M, Cachier, H, Evin, J, Fortin, P, Oberlin, C, Tisnerat, N, Valladas, H. 1995. The Paleolithic paintings of the Chauvet-Pont-d'Arc Cave, at Vallon-Pont-d'Arc (Ardeche, France): direct and indirect radiocarbon datings. Comptes Rendus de l'Academie des Sciences Serie II 320(11):1133–40.Google Scholar
Conard, NJ. 2006. When Neanderthals and Modern Humans Met. Tuebingen: Kerns Verlag. 501 p.Google Scholar
Conard, NJ, Bolus, M. 2003. Radiocarbon dating and the appearance of modern humans and timing of cultural innovations in Europe: new results and new challenges. Journal of Human Evolution 44(3):331–71.Google Scholar
Currie, LA, Klouda, GA, Elmore, D, Gove, HE. 1985. Radiocarbon dating of microgram samples: accelerator mass spectrometry and electromagnetic isotope separation. Nuclear Instruments and Methods in Physics Research B 12(3):396401.CrossRefGoogle Scholar
Currie, LA, Eglinton, TI, Benner, BA, Pearson, A. 1997. Radiocarbon “dating” of individual chemical compounds in atmospheric aerosol: first results comparing direct isotopic and multivariate statistical apportionment of specific polycyclic aromatic hydrocarbons. Nuclear Instruments and Methods in Physics Research B 123(1–4):475–86.Google Scholar
Damon, PE, Donahue, DJ, Gore, BH, Hatheway, AL, Jull, AJT, Linick, TW, Sercel, PJ, Toolin, LJ, Bronk, CR, Hall, ET, Hedges, REM, Housley, R, Law, IA, Perry, C, Bonani, G, Trumbore, S, Woelfli, W, Ambers, JC, Bowman, SGE, Leese, MN, Tite, MS. 1989. Radiocarbon dating of the Shroud of Turin. Nature 337(6208):611–5.Google Scholar
Dansgaard, W, Johnsen, SJ, Clausen, HB, Dahl-Jensen, D, Gundestrup, NS, Hammer, CU, Hvidberg, CS, Steffensen, JP, Sveinbjörnsdóttir, AE, Jouzel, J, Bond, G. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–20.Google Scholar
Hajdas, I, Bonani, G, Moreno, PI, Ariztegui, D. 2003. Precise radiocarbon dating of late-glacial cooling in midlatitude South America. Quaternary Research 59(1):70–8.CrossRefGoogle Scholar
Hajdas, I, Bonani, G, Slusarenko, IY, Seifert, M. 2004. Chronology of Pazyryk 2 and Ulandryk 4 kurgans based on high resolution radiocarbon dating and dendrochronology - a step towards precise dating of Scythian burials. In: Scott, EM, Alekseev, AY, Zaitseva, G, editors. Impact of the Environment on the Human Migration in Eurasia. Dordrecht: Kluwer Academic Publishers. p 107–16.Google Scholar
Hajdas, I, Lowe, DJ, Newnham, RM, Bonani, G. 2006. Timing of the late-glacial climate reversal in the Southern Hemisphere using high-resolution radiocarbon chronology for Kaipo bog, New Zealand. Quaternary Research 65(2):340–5.Google Scholar
Hajdas, I, Bonani, G, Furrer, H, Mäder, A, Schoch, W. 2007. Radiocarbon chronology of the mammoth site at Niederweningen, Switzerland: results from dating bones, teeth, wood, and peat. Quaternary International 164–165:98105.Google Scholar
Hajdas, I, Michczyński, A, Bonani, G, Wacker, L, Furrer, H. 2009. Dating bones near the time limit of radiocarbon dating method: study case mammoth from Niederweningen, Switzerland. Radiocarbon 51(2).Google Scholar
Harkness, DD, Walton, A. 1972. Further investigations of transfer of bomb 14C to man. Nature 240(5379):302–3.Google Scholar
Heinrich, H. 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29(2):142–52.CrossRefGoogle Scholar
Hemming, SR. 2004. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42:RG1005, doi:10.1029/2003RG000128.Google Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):1273–98.Google Scholar
Ingalls, AE, Pearson, A. 2005. Ten years of compound-specific radiocarbon analysis. Oceanography 18(3):1831.Google Scholar
Ingalls, AE, Anderson, RF, Pearson, A. 2004. Radiocarbon dating of diatom-bound organic compounds. Marine Chemistry 92(1–4):91105.Google Scholar
Klein, RG. 2003. Whither the Neanderthals? Science 299(5612):1525–7.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.Google Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211–6.Google Scholar
Libby, WF. 1980. Archaeology and radiocarbon dating. Radiocarbon 22(4):1017–20.Google Scholar
Libby, WF, Anderson, EC, Arnold, JR. 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109(2827):227–8.Google Scholar
Libby, WF, Berger, R, Mead, JF, Alexander, GV, Ross, JF. 1964. Replacement rates for human tissue from atmospheric radiocarbon. Science 146(3648):1170–2.Google Scholar
Mangerud, J, Andersen, ST, Berglund, BE, Donner, JJ. 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3(3):109–26.Google Scholar
Nadeau, M-J, Huls, CM, Grootes, PM. 2008. Attention fraud: modern fabrics made to date old [poster 6.14]. Radiocarbon and Archaeology 5th International Symposium, 26–28 March 2008. Zurich, Switzerland.Google Scholar
Nydal, R, Lövseth, K, Syrstad, O. 1971. Bomb 14C in the human population. Nature 232(5310):418–21.Google Scholar
Peteet, D. 1995. Global Younger Dryas? Quaternary International 28:93104.Google Scholar
Polach, D. 1980. The first 20 years of radiocarbon dating. An annotated bibliography, 1948–68; a pilot study. Radiocarbon 22(3):9971004.CrossRefGoogle Scholar
Rageth, J. 1999. Anatolian Kilims and Radiocarbon Dating. Basel: Rageth & Freunde des Orienttepiche.Google Scholar
Rethemeyer, J, Kramer, C, Gleixner, G, Wiesenberg, GLB, Schwark, L, Andersen, N, Nadeau, M-J, Grootes, PM. 2004. Complexity of soil organic matter: AMS 14C analysis of soil lipid fractions and individual compounds. Radiocarbon 46(1):465–73.Google Scholar
Robertson, JD, Lovell, MA, Buchholz, B, Xie, CS, Markesbery, WR. 2001. Use of bomb pulse 14C to age senile plaques and neurofibrillary tangles in the Alzheimer's disease brain. Journal of Radioanalytical and Nuclear Chemistry 249(2):443–7.Google Scholar
Ruff, M, Wacker, L, Gäggeler, HW, Suter, M, Synal, H-A, Szidat, S. 2007. A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49(2):307–14.Google Scholar
Slusarenko, I, Kuzmin, YV, Christen, JA, Burr, GS, Jull, AJT, Orlova, LA. 2002. 14C wiggle-matching of the Ulandryk-4 (Early Iron Age, Pazyryk cultural complex) floating tree-ring chronology, Altai Mountains, Siberia. In: Higham, T, Bronk Ramsey, C, Owen, C, editors. Radiocarbon and Archaeology: Fourth International Symposium. Oxford, 9–14 April 2002. Oxford: Oxbow Books. p 177–84.Google Scholar
Spalding, KL, Bhardwaj, RD, Buchholz, BA, Druid, H, Frisén, J. 2005a. Retrospective birth dating of cells in humans. Cell 122(1):133–43.Google Scholar
Spalding, KL, Buchholz, BA, Bergman, L-E, Druid, H, Frisén, J. 2005b. Age written in teeth by nuclear tests. Nature 437(7057):333–4.Google Scholar
Stute, M, Clark, JF, Schlosser, P, Broecker, WS, Bonani, G. 1995a. A 30,000 yr continental paleotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico. Quaternary Research 43(2):209–20.Google Scholar
Stute, M, Forster, M, Frischkorn, H, Serejo, A, Clark, JF, Schlosser, P, Broecker, WS, Bonani, G. 1995b. Cooling of tropical Brazil (5°C) during the Last Glacial Maximum. Science 269(5222):379–83.Google Scholar
Trumbore, SE. 1997. Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences of the United States of America 94(16):8284–91.Google Scholar
Trumbore, SE, Chadwick, OA, Amundson, R. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272(5260):393–6.Google Scholar
Tuniz, C, Zoppi, U, Hotchkis, MAC. 2004. Sherlock Holmes counts the atoms. Nuclear Instruments and Methods in Physics Research B 213:469–75.Google Scholar
Van Klinken, GJ, Bowles, AD, Hedges, REM. 1994. Radiocarbon dating of peptides isolated from contaminated fossil bone collagen by collagenase digestion and reversed-phase chromatography. Geochimica et Cosmochimica Acta 58(11):2543–51.Google Scholar
Van Strydonck, M, De Moor, A, Bénazeth, D. 2004. 14C dating compared to art historical dating of Roman and Coptic textiles from Egypt. Radiocarbon 46(1):231–44.Google Scholar
Wild, EM, Arlamovsky, KA, Golser, R, Kutschera, W, Priller, A, Puchegger, S, Rom, W, Steier, P, Vycudilik, W. 2000. 14C dating with the bomb peak: an application to forensic medicine. Nuclear Instruments and Methods in Physics Research B 172(1–4):944–50.Google Scholar
Zheng, Y, Anderson, RF, Froelich, PN, Beck, W, McNichol, AP, Guilderson, T. 2002. Challenges in radiocarbon dating organic carbon in opal-rich marine sediments. Radiocarbon 44(1):123–36.Google Scholar