Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T08:29:05.426Z Has data issue: false hasContentIssue false

Population dynamics of genetically diverse Plasmodium falciparum lineages: community-based prospective study in rural Amazonia

Published online by Cambridge University Press:  27 July 2009

P. ORJUELA-SÁNCHEZ
Affiliation:
Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, Brazil
M. DA SILVA-NUNES
Affiliation:
Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, Brazil Department of Health Sciences, Federal University of Acre, Rio Branco, Brazil
N. S. DA SILVA
Affiliation:
Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, Brazil
K. K. G. SCOPEL
Affiliation:
Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, Brazil
R. M. GONÇALVES
Affiliation:
Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, Brazil
R. S. MALAFRONTE
Affiliation:
Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
M. U. FERREIRA*
Affiliation:
Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, Brazil
*
*Corresponding author: Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo, Brazil. Tel: +55 11 30917746. Fax: +55 11 30917417. E-mail: muferrei@usp.br

Summary

Temporal changes in the prevalence of antigenic variants in Plasmodium falciparum populations have been interpreted as evidence of immune-mediated frequency-dependent selection, but evolutively neutral processes may generate similar patterns of serotype replacement. Over 4 years, we investigated the population dynamics of P. falciparum polymorphisms at the community level by using 11 putatively neutral microsatellite markers. Plasmodium falciparum populations were less diverse than sympatric P. vivax isolates, with less multiple-clone infections, lower number of alleles per locus and lower virtual heterozygosity, but both species showed significant multilocus linkage disequilibrium. Evolutively neutral P. falciparum polymorphisms showed a high turnover rate, with few lineages persisting for several months in the population. Similar results had previously been obtained, in the same community, for sympatric P. vivax isolates. In contrast, the prevalence of the 2 dimorphic types of a major antigen, MSP-2, remained remarkably stable throughout the study period. We suggest that the relatively fast turnover of parasite lineages represents the typical population dynamics of neutral polymorphisms in small populations, with clear implications for the detection of frequency-dependent selection of polymorphisms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, T. J., Haubold, B., Williams, J. T., Estrada-Franco, J. G., Richardson, L., Mollinedo, R., Bockarie, M., Mokili, J., Mharakurwa, S., French, N., Whitworth, J., Velez, I. D., Brockman, A. H., Nosten, F., Ferreira, M. U. and Day, K. P. (2000). Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Molecular Biology and Evolution 17, 14671482.CrossRefGoogle ScholarPubMed
Anderson, T. J., Su, X. Z., Bockarie, M., Lagog, M. and Day, K. P. (1999). Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology 119, 113125. doi:10.1017/S0031182099004552.CrossRefGoogle ScholarPubMed
Awadalla, P., Walliker, D., Babiker, H. and Mackinnon, M. (2001). The question of Plasmodium falciparum population structure. Trends in Parasitology 17, 351353. doi:10.1016/S1471-4922(01)02034-7.Google Scholar
Conway, D. J. (1997). Natural selection on polymorphic malaria antigens and the search for a vaccine. Parasitology Today 13, 2629. doi: 10.1016/S0169-4758(96)10077-6.Google Scholar
Conway, D. J., Greenwood, B. M. and McBride, J. S. (1992). Longitudinal study of Plasmodium falciparum polymorphic antigens in a malaria-endemic population. Infection and Immunity 60, 11221127.Google Scholar
da Silva-Nunes, M., Codeço, C. T., Malafronte, R. S., da Silva, N. S., Juncansen, C., Muniz, P. T. and Ferreira, M. U. (2008). Malaria on the Amazonian frontier: transmission dynamics, risk factors, spatial distribution, and prospects for control. American Journal of Tropical Medicine and Hygiene 79, 624635.CrossRefGoogle ScholarPubMed
da Silveira, L. A., Dorta, M. L., Kimura, E. A., Katzin, A. M., Kawamoto, F., Tanabe, K. and Ferreira, M. U. (1999). Allelic diversity and antibody recognition of Plasmodium falciparum merozoite surface protein 1 during hypoendemic malaria transmission in the Brazilian Amazon region. Infection and Immunity 67, 59065916.CrossRefGoogle ScholarPubMed
Eisen, D., Billman-Jacobe, H., Marshall, V. F., Fryauff, D. and Coppel, R. L. (1998). Temporal variation of the merozoite surface protein-2 gene of Plasmodium falciparum. Infection and Immunity 66, 239246.Google Scholar
Farnert, A. (2008). Plasmodium falciparum population dynamics: only snapshots in time? Trends in Parasitology 24, 340344. doi:10.1016/j.pt.2008.04.008.CrossRefGoogle ScholarPubMed
Felger, I., Irion, A., Steiger, S. and Beck, H.-P. (1999). Epidemiology of multiple Plasmodium falciparum infections. 2. Genotypes of merozoite surface protein 2 of Plasmodium falciparum in Tanzania. Transactions of the Royal Society of Tropical Medicine and Hygiene 93 (Suppl. 1), S1/3S1/9.Google Scholar
Ferreira, M. U. and Hartl, D. L. (2007). Plasmodium falciparum: Worldwide sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-2 (MSP-2). Experimental Parasitology 115, 3240. doi:10.1016/j.exppara.2006.05.003CrossRefGoogle ScholarPubMed
Ferreira, M. U., Karunaweera, N. D., Da Silva-Nunes, M., Da Silva, N. S., Wirth, D. F. and Hartl, D. L. (2007). Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. Journal of Infectious Diseases 195, 12181226. doi:10.1086/512685.CrossRefGoogle ScholarPubMed
Ferreira, M. U., Liu, Q., Zhou, M., Kimura, M., Kaneko, O., Van Thien, H., Isomura, S., Tanabe, K. and Kawamoto, F. (1998). Stable patterns of allelic diversity at the merozoite surface protein-1 locus of Plasmodium falciparum in clinical isolates from southern Vietnam. Journal of Eukaryotic Microbiology 45, 131136. doi:10.1111/j.1550-7408.1998.tb05080.x.Google Scholar
Flück, C., Smith, T., Beck, H.-P., Irion, A., Betuela, I., Alpers, M. P., Anders, R. F., Saul, A., Genton, B. and Felger, I. (2004). Strain-specific humoral response to a polymorphic malaria vaccine. Infection and Immunity 72, 63006305. doi: 10.1128/IAI.72.11.6300-6305.2004CrossRefGoogle ScholarPubMed
Forsyth, K. P., Anders, R. F., Kemp, D. J. and Alpers, M. P. (1988). New approaches to the serotypic analysis of the epidemiology of Plasmodium falciparum. Philosophical Transactions of the Royal Society of London, B 321, 485493. doi: 10.1098/rstb.1988.0104Google Scholar
Genton, B., Betuela, L., Felger, I., Al-Yaman, F., Anders, R. F., Saul, A., Rare, L., Baisor, M., Lorry, K., Brown, G. V., Pye, D., Irving, D. O., Smith, T. A., Beck, H.-P. and Alpers, M. P. (2002). A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1–2b trial in Papua New Guinea. Journal of Infectious Diseases 185, 820827. doi: 10.1086/339342CrossRefGoogle Scholar
Gupta, S., Ferguson, N. and Anderson, R. (1998). Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912915. doi: 10.1126/science.280.5365.912.Google Scholar
Gupta, S. and Maiden, M. C. (2001). Exploring the evolution of diversity in pathogen populations. Trends in Microbiology 9, 181185. doi: 10.1016/S0966-842X(01)01986-2.Google Scholar
Gupta, S., Swinton, J. and Anderson, R. M. (1994). Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proceedings of the Royal Society of London, B 256, 231238. doi:10.1098/rspb.1994.0075Google ScholarPubMed
Haubold, B. and Hudson, R. R. (2000). LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage Analysis. Bioinformatics 16, 847848.CrossRefGoogle ScholarPubMed
Hedrick, P. W. (1999). Perspective: Highly variable loci and their interpretation in evolution and conservation. Evolution 53, 313318.Google Scholar
Jalloh, A., Van Thien, H., Ferreira, M. U., Ohashi, J., Matsuoka, H., Kanbe, T., Kikuchi, A. and Kawamoto, F. (2006). Sequence variation in the T-cell epitopes of the Plasmodium falciparum circumsporozoite protein among field isolates is temporally stable: a 5-year longitudinal study in southern Vietnam. Journal of Clinical Microbiology 44, 12291235. doi:10.1128/JCM.44.4.1229-1235.2006.Google Scholar
Kumkhaek, C., Phra-Ek, K., Renia, L., Singhasivanon, P., Looareesuwan, S., Hirunpetcharat, C., White, N. J., Brockman, A., Gruner, A. C., Lebrun, N., Alloueche, A., Nosten, F., Khusmith, S. and Snounou, G. (2005). Are extensive T cell epitope polymorphisms in the Plasmodium falciparum circumsporozoite antigen, a leading sporozoite vaccine candidate, selected by immune pressure? Journal of Immunology 175, 39353939.Google Scholar
Lipsitch, M. and O'Hagan, J. J. (2007). Patterns of antigenic diversity and the mechanisms that maintain them. Journal of the Royal Society, Interface 4, 787802. doi:10.1098/rsif.2007.0229.Google Scholar
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209220.Google Scholar
Ministry of Health of Brazil (2001). Manual of Antimalarial Therapeutics. Ministry of Health of Brazil, Brasilia.Google Scholar
Neafsey, D. E., Schaffner, S. F., Volkman, S. K., Park, D., Montgomery, P., Milner, D. A. Jr., Lukens, A., Rosen, D., Daniels, R., Houde, N., Cortese, J. F., Tyndall, E., Gates, C., Stange-Thomann, N., Sarr, O., Ndiaye, D., Ndir, O., Mboup, S., Ferreira, M. U., Moraes, S. DO L., Dash, A. P., Chitnis, C. E., Wiegand, R. C., Hartl, D. L., Birren, B. W., Lander, E. S., Sabeti, P. C., Wirth, D. F. (2008). Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biology 9, R171. doi: 10.1186/gb-2008-9-12-r171Google Scholar
Pritchard, J. K., Stephens, M. and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945959.Google Scholar
Smith, J. M., Smith, N. H., O'Rourke, M. and Spratt, B. G. (1993). How clonal are bacteria? Proceedings of the National Academy of Sciences, USA 90, 43844388.Google Scholar
Su, X., Ferdig, M. T., Huang, Y., Huynh, C. Q., Liu, A., You, J., Wootton, J. C. and Wellems, T. E. (1999). A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 13511353. doi: 10.1126/science.286.5443.1351.CrossRefGoogle ScholarPubMed
Taylor, R. R., Smith, D. B., Robinson, V. J., McBride, J. S. and Riley, E. M. (1995). Human antibody response to Plasmodium falciparum merozoite surface protein 2 is serogroup specific and predominantly of the immunoglobulin G3 subclass. Infection and Immunity 63, 43824388.CrossRefGoogle ScholarPubMed
Tonon, A. P., Hoffmann, E. H., Silveira, L. A., Ribeiro, A. G., Goncalves, C. R., Ribolla, P. E., Wunderlich, G. and Ferreira, M. U. (2004). Plasmodium falciparum: sequence diversity and antibody recognition of the merozoite surface protein-2 (MSP-2) in Brazilian Amazonia. Experimental Parasitology 108, 114125. doi:10.1016/j.exppara.2004.08.001Google Scholar