Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T15:39:20.024Z Has data issue: false hasContentIssue false

The structure and development of the spermatozoon of Dipetalonema viteae (Nematoda: Filarioidea)

Published online by Cambridge University Press:  06 April 2009

Diane J. McLaren
Affiliation:
Division of Parasitology, National Institute for Medical Research, London NW71AA

Extract

The structure and development of the spermatozoon of Dipetalonema viteae has been studied by means of electron microscopy. Spermatogonia are developed from a syncytium in the terminal region of the reproductive tract. The syncytium grows along the length of the testis as an anucleate rachis, carrying with it the developing germ cells. The gametes become detached from the rachis when they have become secondary spermatocytes. The chromosomes which appear in the primary spermatocytes at the onset of meiosis persist throughout all subsequent stages of development. The nucleus is not reconstructed. Cytophores are produced by the spermatids at the end of the second meiotic division. The spermatid is an elongated cell, but the mature spermatozoon, within the male tract, is amoeboid. There are only minor differences between the sperm found in the male and female tracts. The male gametes contain complex membraneous organelles which are developed from the Golgi bodies and endoplasmic reticulum of the primary spermatocytes. These organelles are suggested to have similar origins and functions to the acrosome of the typical mammalian spermatozoon.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beams, H. W., & Sekhon, S. S., (1967). Fine structure of the body wall and cells in the pseudocoelom of the nematode Rhabditis pellio. Journal of Ultrastructure Research 18, 580–94.Google Scholar
Beams, H. W., & Sekhon, S. S., (1972). Cytodifferentiation during spermiogenesis in Rhabditis pellio. Journal of Ultrastructure Research 38, 511–27.CrossRefGoogle ScholarPubMed
Bowen, R. H., (1925). Further notes on the acrosome of the animal sperm. The homologies of nonflagellate sperms. Anatomical Record 31, 201–31.Google Scholar
Chitwood, B. G., & Chitwood, M. B., (1940). The reproductive system. In An Introduction to Nematology, pp. 135–58. Baltimore: Monumental Printing Co.Google Scholar
Clark, W. H., Moretti, R. L., & Thomson, W. W., (1967). Electron microscopic evidence for the presence of an acrosomal reaction in Ascaris lumbricoides var. suum. Experimental Cell Research 47, 643–7.Google Scholar
Eschricht, D. F., (1848). Cited by Chitwood, B. G. & Chitwood, M. B. (1940). In An Introduction to Nematology, p. 135. Baltimore: Monumental Printing Co.Google Scholar
Fauré-Fremiet, E., (1913). Le cycle germinatif chez l' Ascaris megalocephala. Archiv. für mikroskopische Anatomie 15, 435758.Google Scholar
Favard, P., (1961). Évolution des ultrastructures cellulaires au cours de la spermatogenése de l'Acaris. Annales des sciences naturelles. Zoologie 12, 53152.Google Scholar
Fawcett, D. W., Anderson, W. A., & Phillips, D. M., (1971). Morphogenic factors influencing the shape of the sperm head. Developmental Biology 26, 220–51.Google Scholar
Foor, W. E., (1967). Ultrastructural aspects of oocyte development and shell formation in Ascaris lumbricoides. The Journal of Parasitology 53, 1245–61.Google Scholar
Foor, W. E., (1968 a). Zygote formation in Ascaris lumbricoides. The Journal of Cell Biology 39, 119–34.Google Scholar
Foor, W. E., (1968 b). Cytoplasmic bridges in the ovary of Ascaris lumbricoides. The Bulletin of the Tulane University Medical Faculty 27, 2330.Google Scholar
Foor, W. E., (1970 a). Morphological changes of in utero Dipetalonema witei spermatozoa. The Journal of Parasitology 56 (no. 4, § 2), p. 103.Google Scholar
Foor, W. E., (1970 b). Spermatozoon morphology and zygote formation in nematodes. Biology of Reproduction, suppl. 2, 177202.Google Scholar
Foor, W. E., Johnson, M. H., & Beaver, P. C., (1971). Morphological changes in the spermatozoa of Dipetalonema viteae in utero. The Journal of Parasitology 57, 1163–9.CrossRefGoogle ScholarPubMed
Gibbons, I. R., & Grimstone, A. V., (1960). On flagellar structure in certain flagellates. Journal of Biophysical and Biochemical Cytology 7, 697715.CrossRefGoogle ScholarPubMed
De Harven, E., (1967). Methods in electron microscope cytology. In Methods in Cancer Research 1, ed. Busch, H., pp. 344. London and New York: Academic Press.Google Scholar
Ishii, K., & Yanagisawa, Y., (1954). Structure of the female reproductive organs of pig Ascaris. Japanese Journal of Medical Sciences. Biology 7, 95109.Google ScholarPubMed
Jamuar, M. P., (1966). Studies on spermiogenesis in a nematode, Nippostrongylus brasiliensis. The Journal of Cell Biology 31, 381–96.CrossRefGoogle Scholar
Kessel, R. G., (1968). Annulate lamellae. Journal of infrastructure Research 25, suppl. 10.Google Scholar
Lee, D. L., (1971). The structure and development of the spermatozoon of Heterakis gallinarum (Nematoda). Journal of Zoology 164, 181–7.CrossRefGoogle Scholar
Lee, D. L., & Anya, A. O., (1967). The structure and development of the spermatozoon of Aspicularis tetraptera (Nematoda). Journal of Cell Science 2, 537–44.Google Scholar
Lewis, P. R., & Shute, C. C. D., (1966). The distribution of cholinesterase in cholinergic neurones demonstrated with the electron microscope. Journal of Cell Science 1, 381–90.CrossRefGoogle ScholarPubMed
Maeda, T., (1968). Electron microscopic studies on spermatogenesis in Dirofilaria immitis. Kagoshima Igaku Zasshi 20, 146–65.Google Scholar
Maeda, T., Harada, R., Nakashima, A., Sadakata, Y., Ando, M., Yonamine, K., Otsuji, Y., & Sato, H., (1970). Electron microscopic studies on spermatogenesis in Dirofilaria immitis. In Recent Advances in Researches on Filariasis and Schistosomiasis in Japan (ed. Sasa, M.), pp. 7397. University of Tokyo Press and University Park Press.Google Scholar
McLaren, D. J., (1971). Ultrastructural studies on filarial worms. Ph.D. Thesis. Brunei University.Google Scholar
McLaren, D. J., (1973). Oogenesis and fertilization in Dipetalonema viteae (Nematoda: Filarioidea). Parasitology 66, 465–72.CrossRefGoogle Scholar
Millonig, G., (1961). Advantages of a phosphate buffer for osmium tetroxide solutions in fixation. Journal of Applied Physiology 32, 1637.Google Scholar
Nath, V., & Singh, S., (1956). The nematode sperm. Punjab University Research Bulletin 91, 121–34.Google Scholar
Pasternak, J., & Samoiloff, M. R., (1972). Cytoplasmic organelles present during spermatogenesis in the free-living nematode Panagrellus silusiae. Canadian Journal of Zoology 50, 147–51.CrossRefGoogle Scholar
Porter, K. R., & Tilney, L. G., (1965). Microtubules and intracellular motility. Science 150, 382.Google Scholar
Prestage, J. J., (1960). The fine structure of the growth region of the ovary in Ascaris lumbricoides var. suum with special reference to the rachis. The Journal of Parasitology 46, 6978.Google Scholar
Schneider, A., (1866). Monographie de Nematoden p. 357. Berlin.Google Scholar
Seurat, L. G., (1920). Histoire naturelle de nematodes de la Berbérie. Université d'alger. Alger.Google Scholar
Sturdivant, H. P., (1934). Studies on the spermatocyte divisions in Ascaris megalocephala; with special reference to the central bodies, Golgi complex and mitochondria. Journal of Morphology 55, 435–76.Google Scholar
Taylor, A. E. R., (1960). The spermatogenesis and embryology of Litomosoides carinii and Dirofilaria immitis. Journal of Helminthology 34, 312.Google Scholar
Terry, A., Terry, R. J., & Worms, M. J., (1961). Dipetalonema witei, filarial parasite of the jird Meriones libycus. II. The reproductive system, gametogenesis and development of the microfilaria. The Journal of Parasitology 47, 703–11.CrossRefGoogle ScholarPubMed
Tilney, L. G., & Porter, K. R., (1965). Studies on the microtubules of Heliozoa. I. Fine structure of Actinosphaerium with particular reference to axial rod structure. Protoplasma 50, 317–44.Google Scholar
Venable, J. H., & Coggleshall, R., (1965). A simplified lead citrate stain for use in electron microscopy. The Journal of Cell Biology 25, 407–8.Google Scholar
Walton, A. C., (1940). In An Introduction to Nematology (ed. Chitwood, B. G., & Chitwood, M. B.), pp. 205–16. Baltimore: Monumental Printing Co.Google Scholar