Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T13:34:37.825Z Has data issue: false hasContentIssue false

Can host density attenuate parasitism?

Published online by Cambridge University Press:  16 August 2016

L. Magalhães*
Affiliation:
Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal Université de Bordeaux, EPOC, UMR 5805 CNRS, 2, rue du Pr Jolyet, F-33120 Arcachon, France
R. Freitas
Affiliation:
Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
A. Dairain
Affiliation:
Université de Bordeaux, EPOC, UMR 5805 CNRS, 2, rue du Pr Jolyet, F-33120 Arcachon, France
X. De Montaudouin
Affiliation:
Université de Bordeaux, EPOC, UMR 5805 CNRS, 2, rue du Pr Jolyet, F-33120 Arcachon, France
*
Correspondence should be addressed to: L. Magalhães, Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal email: luisa.magalhaes@ua.pt

Abstract

Bivalve populations display fluctuating densities resulting in different interactions among them and with their environment. Using the edible cockle (Cerastoderma edule) as a model, we investigated two alternative hypotheses concerning the effect of density on individual infection intensity by trematode parasites. Considering that these parasites infect cockles through filtration activity, our first hypothesis was that high host density will have a dilution effect so that infection intensity decreases with host density. Conversely, high cockle density could attract other hosts used by these trematode parasites to complete their life cycle. A 17-year monthly survey of a cockle population in Arcachon Bay, France, showed a negative correlation between the cockle density and the abundance of parasite larvae in juvenile cockles with a significant threshold when adult cockle density reached 400 ind. m−2. This result was confirmed for the four dominating trematode parasites, independently considered. Additionally, a field experiment was performed during 9 months, with cockles maintained in enclosures with two densities (200 and 800 ind. m−2). Individual cockle mean infection was 1.5 times higher at low cockle density, mainly due to one dominant trematode species (Parvatrema minutum). In conclusion and confirming the first advanced hypothesis, for certain environments, negative consequences of bivalve intraspecific competition at high density can be mitigated by lower parasite pressure.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

André, C. and Rosenberg, R. (1991) Adult–larval interactions in the suspension-feeding bivalves Cerastoderma edule and Mya arenaria . Marine Ecology Progress Series 71, 227234.Google Scholar
Babirat, C., Mouritsen, K.N. and Poulin, R. (2004) Equal partnership: two trematode species, not one, manipulate the burrowing behaviour of the New Zealand cockle, Austrovenus stutchburyi . Journal of Helminthology 78, 195199.Google Scholar
Bachelot, B., Uriarte, M. and McGuire, K. (2015) Interactions among mutualism, competition, and predation foster species coexistence in diverse communities. Theoretical Ecology 8, 297312.CrossRefGoogle Scholar
Bartoli, P., Jousson, O. and Russell-Pinto, F. (2000) The life cycle of Monorchis parvus (Digenea: Monorchiidae) demonstrated by developmental and molecular data. Journal of Parasitology 86, 479489.Google Scholar
Beukema, J.J. and Dekker, R. (2015) Density dependence of growth and production in a Wadden Sea population of the cockle Cerastoderma edule . Marine Ecology Progress Series 538, 157167.Google Scholar
Bhattacharya, C.G. (1967) A simple method of resolution of a distribution into Gaussian components. Biometrics 23, 115135.Google Scholar
Bowers, E.A. (1969) Cercaria Bucephalopsis haimeana (Lacaze-Duthiers, 1854) (Digenea – Bucephalidae) in cockle, Cardium edule L. in South Wales. Journal of Natural History 3, 409422.Google Scholar
Bowers, E.A., Bartoli, P., Russell-Pinto, F. and James, B.L. (1996) The metacercariae of sibling species of Meiogymnophallus, including M. rebecqui comb. nov. (Digenea: Gymnophallidae), and their effects on closely related Cerastoderma host species (Mollusca: Bivalvia). Parasitology Research 82, 505510.CrossRefGoogle ScholarPubMed
Bruno, J.F., Stachowicz, J.J. and Bertness, M.D. (2003) Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18, 119125.Google Scholar
Bulleri, F. (2009) Facilitation research in marine systems: state of the art, emerging patterns and insights for future developments. Journal of Ecology 97, 11211130.Google Scholar
Chesson, P. (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31, 343366.Google Scholar
de Montaudouin, X., Audemard, C. and Labourg, P.J. (1999) Does the slipper limpet (Crepidula fornicata, L.) impair oyster growth and zoobenthos biodiversity? A revisited hypothesis. Journal of Experimental Marine Biology and Ecology 235, 105124.CrossRefGoogle Scholar
de Montaudouin, X. and Bachelet, G. (1996) Experimental evidence of complex interactions between biotic and abiotic factors in the dynamics of an intertidal population of the bivalve Cerastoderma edule . Oceanologica Acta 19, 449463.Google Scholar
de Montaudouin, X., Bazairi, H. and Culloty, S. (2012) Effect of trematode parasites on cockle Cerastoderma edule growth and condition index: a transplant experiment. Marine Ecology Progress Series 471, 111121.Google Scholar
de Montaudouin, X., Blanchet, H., Desclaux-Marchand, C., Lavesque, N. and Bachelet, G. (2015) Cockle infection by Himasthla quissetensis – I. From cercariae emergence to metacercariae infection. Journal of Sea Research. http://dx.doi.org/10.1016/j.seares.2015.02.008 Google Scholar
de Montaudouin, X., Thieltges, D.W., Gam, M., Krakau, M., Pina, S., Bazairi, H., Dabouineau, L., Russell-Pinto, F. and Jensen, K.T. (2009) Digenean trematode species in the cockle Cerastoderma edule: identification key and distribution along the north-eastern Atlantic shoreline. Journal of the Marine Biological Association of the United Kingdom 89, 543556.Google Scholar
Desclaux, C., de Montaudouin, X. and Bachelet, G. (2002) Cockle emergence at the sediment surface: ‘favourization’ mechanism by digenean parasites? Diseases of Aquatic Organisms 52, 137149.Google Scholar
Desclaux, C., de Montaudouin, X. and Bachelet, G. (2004) Cockle Cerastoderma edule population mortality: role of the digenean parasite Himasthla quissetensis . Marine Ecology Progress Series 279, 141150.Google Scholar
Desclaux, C., Russell-Pinto, F., de Montaudouin, X. and Bachelet, G. (2006) First record and description of Metacercariae of Curtuteria arguinae n. sp. (Digenea: Echinostomatidae), parasite of cockles Cerastoderma edule (Mollusca: Bivalvia) in Arcachon Bay, France. Journal of Parasitology 92, 578587.Google Scholar
Fauchald, P., Rodven, R., Bardsen, B-J., Langeland, K., Tveraa, T., Yoccoz, N.G. and Ims, R.A. (2007) Escaping parasitism in the selfish herd: age, size and density-dependent warble fly infestation in reindeer. Oikos 116, 491499.Google Scholar
Gam, M., de Montaudouin, X. and Bazairi, H. (2009) Do trematode parasites affect cockle (Cerastoderma edule) secondary production and elimination? Journal of the Marine Biological Association of the United Kingdom 89, 13951402.CrossRefGoogle Scholar
Gam, M., de Montaudouin, X. and Bazairi, H. (2010) Population dynamics and secondary production of the cockle Cerastoderma edule: a comparison between Merja Zerga (Moroccan Atlantic Coast) and Arcachon Bay (French Atlantic Coast). Journal of Sea Research 63, 191201.Google Scholar
Gayanilo, F.C., Sparre, P. and Pauly, D. (2005) FAO-ICLARM stock assessment tools II – revised version. Rome: FAO.Google Scholar
Hart, B.L. (1994) Behavioral defense against parasites – interaction with parasite invasiveness. Parasitology 109(S1), S139S151.Google Scholar
Honkoop, P.J.C., Berghuis, E.M., Holthuijsen, S., Lavaleye, M.S.S. and Piersma, T. (2008) Molluscan assemblages of seagrass-covered and bare intertidal flats on the Banc d'Arguin, Mauritania, in relation to characteristics of sediment and organic matter. Journal of Sea Research 60, 235243.Google Scholar
Jensen, K.T. (1992) Dynamics and growth of the cockle, Cerastoderma edule, on an intertidal mud-flat in the Danish Wadden Sea – effects of submersion time and density. Netherlands Journal of Sea Research 28, 335345.Google Scholar
Johnson, P.T.J., Preston, D.L., Hoverman, J.T., Henderson, J.S., Paull, S.H., Richgels, K.L.D. and Redmond, M.D. (2012) Species diversity reduces parasite infection through cross-generational effects on host abundance. Ecology 93, 5664.Google Scholar
Johnson, P.T.J. and Thieltges, D.W. (2010) Diversity, decoys and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology 213, 961970.CrossRefGoogle ScholarPubMed
Kamermans, P., Vanderveer, H.W., Karczmarski, L. and Doeglas, G.W. (1992) Competition in deposit-feeding and suspension-feeding bivalves – experiments in controlled outdoor environments. Journal of Experimental Marine Biology and Ecology 162, 113135.Google Scholar
Keesing, F., Holt, R.D. and Ostfeld, R.S. (2006) Effects of species diversity on disease risk. Ecology Letters 9, 485498.Google Scholar
Lauckner, G. (1983) Diseases of Mollusca: Bivalvia. In Kinne, O. (ed.) Diseases of marine animals, Volume 2. Hamburg: Biologische Helgoland, pp. 477879.Google Scholar
Magalhães, L., Freitas, R. and de Montaudouin, X. (2016) Cockle population dynamics: recruitment predicts adult biomass, not the inverse. Marine Biology 163, 16.Google Scholar
Mooring, M.S. and Hart, B.L. (1992) Animal grouping for protection from parasites – selfish herd and encounter-dilution effects. Behaviour 123, 173193.CrossRefGoogle Scholar
Morgan, E., O'Riordan, R.M. and Culloty, S.C. (2013) Climate change impacts on potential recruitment in an ecosystem engineer. Ecology and Evolution 3, 581594.Google Scholar
Mouritsen, K.N., McKechnie, S., Meenken, E., Toynbee, J.L. and Poulin, R. (2003) Spatial heterogeneity in parasite loads in the New Zealand cockle: the importance of host condition and density. Journal of the Marine Biological Association of the United Kingdom 83, 307310.Google Scholar
Mouritsen, K.N. and Poulin, R. (2003a) Parasite-induced trophic facilitation exploited by a non-host predator: a manipulator's nightmare. International Journal for Parasitology 33, 10431050.Google Scholar
Mouritsen, K.N. and Poulin, R. (2003b) The mud flat anemone-cockle association: mutualism in the intertidal zone? Oecologia 135, 131137.Google Scholar
O'Connell-Milne, S.A., Poulin, R., Savage, C. and Rayment, W. (2016) Reduced growth, body condition and foot length of the bivalve Austrovenus stutchburyi in response to parasite infection. Journal of Experimental Marine Biology and Ecology 474, 2328.Google Scholar
Patterson, J.E.H. and Ruckstuhl, K.E. (2013) Parasite infection and host group size: a meta-analytical review. Parasitology 140, 803813.Google Scholar
Rakotomalala, C., Grangere, K., Ubertini, M., Foret, M. and Orvain, F. (2015) Modelling the effect of Cerastoderma edule bioturbation on microphytobenthos resuspension towards the planktonic food web of estuarine ecosystem. Ecological Modelling 316, 155167.Google Scholar
Samsing, F., Oppedal, F., Johansson, D., Bui, S. and Dempster, T. (2014) High host densities dilute sea lice Lepeophtheirus salmonis loads on individual Atlantic salmon, but do not reduce lice infection success. Aquaculture Environment Interactions 6, 8189.CrossRefGoogle Scholar
Service, M.W. (1991) Agricultural development and arthropod-borne diseases – a review. Revista De Saude Publica 25, 165178.Google Scholar
Sorci, G., de Fraipont, M. and Clobert, J. (1997) Host density and ectoparasite avoidance in the common lizard (Lacerta vivipara). Oecologia 111, 183188.CrossRefGoogle ScholarPubMed
Tebble, N. (1966) British bivalve seashells. A handbook for identification. London: Trustees of the British Museum (Natural History).Google Scholar
Thieltges, D.W., Bordalo, M.D., Hernandez, A.C., Prinz, K. and Jensen, K.T. (2008a) Ambient fauna impairs parasite transmission in a marine parasite-host system. Parasitology 135, 11111116.Google Scholar
Thieltges, D.W., Jensen, K.T. and Poulin, R. (2008b) The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135, 407426.Google Scholar
Thieltges, D.W. and Reise, K. (2007) Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve. Oecologia 150, 569581.CrossRefGoogle Scholar
Thieltges, D.W., Reise, K., Prinz, K. and Jensen, K.T. (2009) Invaders interfere with native parasite-host interactions. Biological Invasions 11, 14211429.Google Scholar
Thomas, F. and Poulin, R. (1998) Manipulation of a mollusc by a trophically transmitted parasite: convergent evolution or phylogenetic inheritance? Parasitology 116, 431436.Google Scholar
Wegeberg, A.M., de Montaudouin, X. and Jensen, K.T. (1999) Effect of intermediate host size (Cerastoderma edule) on infectivity of cercariae of three Himasthla species (Echinostomatidae, Trematoda). Journal of Experimental Marine Biology and Ecology 238, 259269.Google Scholar
Wegeberg, A.M. and Jensen, K.T. (1999) Reduced survivorship of Himasthla (Trematoda, Digenea)-infected cockles (Cerastoderma edule) exposed to oxygen depletion. Journal of Sea Research 42, 325331.Google Scholar
Welsh, J.E., van der Meer, J., Brussaard, C.P.D. and Thieltges, D.W. (2014) Inventory of organisms interfering with transmission of a marine trematode. Journal of the Marine Biological Association of the United Kingdom 94, 697702.Google Scholar