Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T19:45:28.193Z Has data issue: false hasContentIssue false

Substances Controlling the Growth of a Diatom

Published online by Cambridge University Press:  11 May 2009

H. W. Harvey
Affiliation:
Hydrographer at the Plymouth Laboratory

Extract

The diatom Ditylum brightwelli requires, for vigorous growth in artificial sea water, two organic substances, or groups of substances, in addition to inorganic salts. The substances, or groups, act in a manner complementary to each other.

The effect of adding either is greatly increased by the presence of the other.

One accessory substance, or group, has been obtained in impure state from natural sea water and from extracts of algae by adsorption on carbon and elution. It has properties of an inorganic acid or internal anhydride.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1939

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E. J., 1914. On the culture of the plankton diatom Thalassiosira gravida Cleve in artificial sea water. Journ. Mar. Biol. Assoc., Vol. X, pp. 417–39.CrossRefGoogle Scholar
Allen, E. J. & Nelson, E. W., 1910. On the artificial culture of marine plankton organisms. Quart. Journ. Micr. Sci., Vol. 60, pp. 361431.Google Scholar
Gross, F., 1937a. Life history of some marine plankton diatoms. Phil. Trans. Roy. Soc., B, Vol. 228, pp. 147.Google Scholar
Gross, F., 1937b. Notes on the culture of some marine plankton organisms. Journ. Mar. Biol. Assoc., Vol. XXI, pp. 756–68.Google Scholar
Hammett, F. S., 1930. The chemical stimulus essential for growth by increase in cell numbers. Protoplasma, Vol. 7, pp. 297322.CrossRefGoogle Scholar
Harvey, H. W., 1933. On the rate of diatom growth. Journ. Mar. Biol. Assoc., Vol. XIX, pp. 253–76.Google Scholar
Harvey, H. W., 1937. The supply of iron to diatoms. Journ. Mar. Biol. Assoc., Vol. XXII, pp. 205–19.CrossRefGoogle Scholar
Keys, A., Christiensen, E. H. & Krogh, A.The organic metabolism of sea water. Journ. Mar. Biol. Assoc., Vol. XX, pp. 628–46.Google Scholar
Kögl, F. & Fries, N., 1937. Ueber den Einfluss von Biotin, Aneurin und Mesoinosit auf das Wachstum verschiedener Pilzarten. Zeit. phys. Chem., Bd. 249, p. 93.CrossRefGoogle Scholar
Kögl, F. & Haagen-Smit, A. J., 1936. Biotin und Aneurin als Phytohormone. Zeit. physiol. Chem., Vol. 243, p. 209.CrossRefGoogle Scholar
Kögl, F. & Tonnis, B., 1936. Ueber das Bios Problem. Zeit. physiol. Chem., Vol. 242, p. 43.CrossRefGoogle Scholar
Mazur, A. & Clark, H. T., 1938. The amino acids of certain marine algae. Journ. Biol. Chem., Vol. 123, pp. 729–40.CrossRefGoogle Scholar
Peach, E. A. & Drummond, J. C., 1924. On the culture of the marine diatom Nitzschia closterium f. minutissima in artificial sea water. Biochem. Journ., Vol. 18, pp. 464–8.CrossRefGoogle ScholarPubMed
Pringsheim, E. G., 1936. Der Rätsel der Erdabkochung. Bot. Centralblatt, Beiheft 55 a.Google Scholar
Thompson, T. G. & Wilson, T. L., 1935. The occurrence and determination of manganese in sea water. journ. Amer. Chem. Soc., Vol. 57, p. 233.CrossRefGoogle Scholar