Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-27T03:53:57.137Z Has data issue: false hasContentIssue false

Ion transport and gas collision effects in a radio frequency quadrupole cooler: installation in the Eltrap solenoid and beam calculations

Published online by Cambridge University Press:  12 February 2024

M. Cavenago*
Affiliation:
INFN-Laboratori Nazionali di Legnaro, v.le dell'Università n 2, 35020 Legnaro (PD), Italy
M. Romé
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, v. Celoria 16, 20133 Milano, Italy INFN, Sezione di Milano, v. Celoria 16, 20133 Milano, Italy
G. Maero
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, v. Celoria 16, 20133 Milano, Italy INFN, Sezione di Milano, v. Celoria 16, 20133 Milano, Italy
F. Cavaliere
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, v. Celoria 16, 20133 Milano, Italy INFN, Sezione di Milano, v. Celoria 16, 20133 Milano, Italy
M. Comunian
Affiliation:
INFN-Laboratori Nazionali di Legnaro, v.le dell'Università n 2, 35020 Legnaro (PD), Italy
M. Maggiore
Affiliation:
INFN-Laboratori Nazionali di Legnaro, v.le dell'Università n 2, 35020 Legnaro (PD), Italy
A. Ruzzon
Affiliation:
INFN-Laboratori Nazionali di Legnaro, v.le dell'Università n 2, 35020 Legnaro (PD), Italy
*
Email address for correspondence: cavenago@lnl.infn.it

Abstract

Radio frequency quadrupole coolers (RFQCs) are very suitable to cool ion beams with moderate energy spread, typically ions of exotic nuclear species (like $^{132}$Sn$^{1+}$) as in the Selective Production of Exotic Species project at the Laboratori Nazionali di Legnaro, whose ion source supplies 40 keV ions. Beam dynamics includes ion–gas collisions (with a balance of cooling and diffusion effects), acceleration and deceleration and radiofrequency confinement, which can be supplemented by static magnetic field effects. Insertion of a prototype RFQC in the solenoid of the Eltrap machine is also discussed here, with innovations in beam extraction and in modelling, now also based on stochastic equations. Practical consideration on gas pumping and voltage distribution are also included. Typical limits of RFQC are discussed, with special attention to the extracted beam root mean square emittance, which is shown to strongly depend not only on cooler parameters, but also on extraction optics.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoretti, M., Bettega, G., Cavaliere, F., Cavenago, M., De Luca, F., Pozzoli, R. & Romé, M. 2003 Cylindrical Penning trap for the study of electron plasmas. Rev. Sci. Instrum. 74, 39913997.CrossRefGoogle Scholar
de Angelis, G., Prete, G., Andrighetto, A., Manzolaro, M., Corradetti, S., Scarpa, D., Rossignoli, M., Monetti, A., Lollo, M., Calderolla, M., et al. 2015 The SPES radioactive ion beam facility of INFN. J. Phys.: Conf. Ser. 580 (1), 012014.Google Scholar
Beu, S.C., Hendrickson, C.L. & Marshall, A.G. 2011 Excitation of radial ion motion in an RF-only multipole ion guide immersed in a strong magnetic field gradient. J. Am. Soc. Mass Spectrom. 22, 591601.CrossRefGoogle Scholar
Birdsall, C.K. 1985 Plasma Physics via Computer Simulation. McGraw-Hill.Google Scholar
Bisoffi, G., Prete, G., Andrighetto, A., Andreev, V., Bellan, L., Bellato, M., Bortolato, D., Calderolla, M., Canella, S., Comunian, M., et al. 2016 Progress in the design and construction of SPES at INFN-LNL. Nucl. Instrum. Meth. A 376, 402407.CrossRefGoogle Scholar
Boscolo, M., Delahaye, J.P. & Palmer, M. 2019 The future prospects of muon colliders and neutrino factories. In Reviews of Accelerator Science and Technology, pp. 189–214. World Scientific. doi:10.1142/9789811209604_0010CrossRefGoogle Scholar
Boussaid, R., Ban, G., Quéméner, G., Merrer, Y. & Lorry, J. 2017 Development of a radio-frequency quadrupole cooler for high beam currents. Phys. Rev. Accel. Beams 20, 124701.CrossRefGoogle Scholar
Catherall, R., Andreazza, W., Breitenfeldt, M., Dorsival, A., Focker, G.J., Gharsa, T.P., Giles, T.J., Grenard, J.-L., Locci, F., Martins, P., et al. 2017 The ISOLDE facility. J. Phys. G 44 (9), 094002.CrossRefGoogle Scholar
Cavenago, M., Romé, M., Maero, G., Maggiore, M., Bellan, L., Cavaliere, F., Comunian, M., Galatà, A., Panzeri, N., Pisent, A., et al. 2019 Development and installation of a radio frequency quadrupole cooler test. Rev. Sci. Instrum. 90, 113324.CrossRefGoogle ScholarPubMed
Cavenago, M., Baltador, C., Bellan, L., Comunian, M., Fagotti, E., Galatà, A., Maero, G., Maggiore, M., Pisent, A., Romé, M., et al. 2022 Optimization of mass resolution parameters combined with ion cooler performance. In Proc. IPAC’22, International Particle Accelerator Conference 13 (ed. F. Zimmermann, H. Tanaka, P. Sudmuang, P. Klysubun, P. Sunwong, T. Chanwattana, C. Petit-Jean-Genaz & V.R.W. Schaa), pp. 2770–2773. JACoW Publishing.Google Scholar
Comsol 2008 Comsol Multiphysics (TM) version 3.5 or higher. see http://www.comsol.eu.Google Scholar
Comunian, M., Andrighetto, A., Antonini, P., Baltador, C., Bellan, L., Benini, D., Bermudez, J., Bisoffi, G., Bortolato, D., Calderolla, M., et al. 2020 Status of the SPES exotic beam facility. J. Phys.: Conf. Ser. 1401 (1), 012002.Google Scholar
Dholakia, K., Horvath, G.Z.S.K., Segal, D.M. & Thompson, R.C. 1992 Photon correlation measurement of ion oscillation frequencies in a combined trap. J. Mod. Opt. 39 (11), 21792185.CrossRefGoogle Scholar
El-Kareh, A.B. & El-Kareh, J.C.J. 1970 Electron Beams, Lenses, and Optics. Volume 2. Academic Press.Google Scholar
Herfurth, F., Dilling, J., Kellerbauer, A., Bollen, G., Henry, S., Kluge, H.-J., Lamour, E., Lunney, D., Moore, R.B., Scheidenberger, C., et al. 2001 A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instrum. Meth. Phys. Res. A 469, 254275.CrossRefGoogle Scholar
Larson, D. 1995 Electron cooling at the SSC. AIP Conf. Proc. 326 (1), 543559.CrossRefGoogle Scholar
Li, G.-Z. & Werth, G. 1992 The combined trap and some possible applications. Phys. Scr. 46 (6), 587592.CrossRefGoogle Scholar
Lieberman, M.A. & Lichtenberg, A.J. 1994 Principles of Plasma Discharges and Materials Processing. Wiley-Interscience.Google Scholar
Livesey, R.G. 1998 Flow of gases through tubes and orifices. In Foundations of Vacuum Science and Technology (ed. J. Lafferty), chap. 2, pp. 81–140. John Wiley & Sons.Google Scholar
Maero, G., Pozzoli, R., Romé, M., Chen, S. & Ikram, M. 2016 Axial heating and temperature of RF-excited non-neutral plasmas in Penning-Malmberg traps. J. Instrum. 11, C09007.CrossRefGoogle Scholar
Maggiore, M., Cavenago, M., Comunian, M., Chiurlotto, F., Galatà, A., De Lazzari, M., Porcellato, A.M., Roncolato, C., Stark, S., Caruso, A., et al. 2014 Plasma-beam traps and radiofrequency quadrupole beam coolers. Rev. Sci. Instrum. 85, 02B909.CrossRefGoogle ScholarPubMed
Manura, D.J. & Dahl, D.A. 2011 SIMION, Version 8.0. Scientific Instrument Services.Google Scholar
Manzolaro, M., Andrighetto, A., Meneghetti, G., Monetti, A., Scarpa, D., Rossignoli, M., Vasquez, J., Corradetti, S., Calderolla, M. & Prete, G. 2014 Ongoing characterization of the forced electron beam induced arc discharge ion source for the selective production of exotic species facility. Rev. Sci. Instrum. 85 (2), 02B918.CrossRefGoogle ScholarPubMed
Matlab 2016 Version 2016a (TM) or higher. see also http://www.mathworks.com.Google Scholar
McDaniel, E.W. 1973 The Mobility and Diffusion of Ions in Gases. Wiley.Google Scholar
van der Meer, S. 1987 An introduction to stochastic cooling. AIP Conf. Proc. 153 (2), 16281649.CrossRefGoogle Scholar
Möhl, D. 1988 Phase space cooling in storage rings. Phys. Scr. T22, 2127.CrossRefGoogle Scholar
Moore, R.B., Gianfrancesco, O., Lumbo, R. & Schwarz, S. 2006 The use of high RFQ fields to manipulate ions. Intl J. Mass Spectrom. 251, 190197.CrossRefGoogle Scholar
Neuffer, D. 1983 Principles and applications of muon cooling. Part. Accel. 14.Google Scholar
Nieminen, A., Huikari, J., Jokinen, A., Äystö, J., Campbell, P. & Cochrane, E.C.A. 2001 Beam cooler for low-energy radioactive ions. Nucl. Instrum. Meth. Phys. Res. A 469, 244253.CrossRefGoogle Scholar
Penescu, L., Catherall, R., Lettry, J. & Stora, T. 2010 Development of high efficiency versatile arc discharge ion source at CERN ISOLDE. Rev. Sci. Instrum. 81 (2).CrossRefGoogle ScholarPubMed
Pierce, J.R. 1954 Theory and Design of Electron Beams, 2nd edn. Van Nostrand.Google Scholar
Poth, H. 1990 Electron cooling: theory, experiment, application. Phys. Rep. 196 (3), 135297.CrossRefGoogle Scholar
Reiser, M & O-Shea, P. 2008 Theory and Design of Charged Particle Beams. Wiley-VCH.CrossRefGoogle Scholar
Ruzzon, A., Maggiore, M., Gelain, F., Marcato, D., Ban, G., Bougard, B., Cam, J.F, Desrues, P., Gautier, C., Lory, J., et al. 2023 Status of the commissioning of Beam Cooler for SPES project. In Proc. IPAC’23, International Particle Accelerator Conference 14 (ed. R. Assmann, P. McIntosh, G. Bisoffi, A. Fabris, I. Andrian & G. Vinicola), pp. 2245–2248. JACoW Publishing.Google Scholar
Schwarz, S. 2006 IonCool A versatile code to characterize gas-filled ion bunchers and coolers (not only) for nuclear physics applications. Nucl. Instrum. Meth. A 566, 233243.CrossRefGoogle Scholar
Siemann, R.H. 1992 Electron-positron colliders and other accelerator technologies. AIP Conf. Proc. 272 (1), 334345.CrossRefGoogle Scholar