Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T07:49:28.830Z Has data issue: false hasContentIssue false

Nonlinear gyrokinetic Coulomb collision operator

Published online by Cambridge University Press:  08 November 2019

R. Jorge
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
B. J. Frei
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
P. Ricci
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

Abstract

A gyrokinetic Coulomb collision operator is derived, which is particularly useful to describe the plasma dynamics at the periphery region of magnetic confinement fusion devices. The derived operator is able to describe collisions occurring in distribution functions arbitrarily far from equilibrium with variations on spatial scales at and below the particle Larmor radius. A multipole expansion of the Rosenbluth potentials is used in order to derive the dependence of the full Coulomb collision operator on the particle gyroangle. The full Coulomb collision operator is then expressed in gyrocentre phase-space coordinates, and a closed formula for its gyroaverage in terms of the moments of the gyrocentre distribution function in a form ready to be numerically implemented is provided. Furthermore, the collision operator is projected onto a Hermite–Laguerre velocity space polynomial basis and expansions in the small electron-to-ion mass ratio are provided.

Type
Research Article
Copyright
© The Author(s) (2019). Published by Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Institute for Research in Electronics and Applied Physics, University of Maryland, College Park MD 20742, USA. Email address for correspondence: rjorge@umd.edu

References

Abel, I., Barnes, M., Cowley, S., Dorland, W., Hammett, G., Schekochihin, A., Tatsuno, T., Sauter, O., Garbet, X. & Sindoni, E. 2008a Model collision operators for numerical gyrokinetics. AIP Conf. Proc. 1069 (233), CP109.Google Scholar
Abel, I. G., Barnes, M., Cowley, S. C., Dorland, W. & Schekochihin, A. A. 2008b Linearized model Fokker–Planck collision operators for gyrokinetic simulations. I. Theory. Phys. Plasmas 15 (12), 1.Google Scholar
Abramowitz, M., Stegun, I. & Miller, D. 1965 Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. Dover Publications, Inc.Google Scholar
Andrews, L. C. 1992b Special Functions of Mathematics for Engineers. McGraw-Hill.Google Scholar
Arfken, G. B., Weber, H. J. & Harris, F. E. 2013b Mathematical Methods for Physicists. Academic Press.Google Scholar
Banach, Z. & Piekarski, S. 1989 Irreducible tensor description. I. A classical gas. J. Math. Phys. 30 (8), 1804.Google Scholar
Barnes, M., Abel, I. G., Dorland, W., Ernst, D. R., Hammett, G. W., Ricci, P., Rogers, B. N., Schekochihin, A. A. & Tatsuno, T. 2009 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests. Phys. Plasmas 16 (7), 072107.Google Scholar
Bohm, A. & Loewe, M. 1993 Quantum Mechanics: Foundations and Applications. Springer.Google Scholar
Brizard, A. & Hahm, T. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79 (2), 421.Google Scholar
Brizard, A. J. 2004 A guiding-center Fokker–Planck collision operator for nonuniform magnetic fields. Phys. Plasmas 11 (9), 4429.Google Scholar
Brizard, A. J. & Mishchenko, A. 2009 Guiding-center recursive Vlasov and Lie-transform methods in plasma physics. J. Plasma Phys. 75 (5), 675.Google Scholar
Burby, J. W., Brizard, A. J. & Qin, H. 2015 Energetically consistent collisional gyrokinetics. Phys. Plasmas 22 (10), 100707.Google Scholar
Cary, J. & Brizard, A. 2009 Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81 (2), 693.Google Scholar
Cary, J. R. 1981 Lie transform perturbation theory for Hamiltonian systems. Phys. Rep. 79 (2), 129.Google Scholar
Catto, P. J. 1978 Linearized gyro-kinetics. Plasma Phys. 20 (7), 719.Google Scholar
Catto, P. J. & Tsang, K. T. 1977 Linearized gyro-kinetic equation with collisions. Phys. Fluids 20 (3), 396.Google Scholar
Chang, C., Ku, S., Tynan, G., Hager, R., Churchill, R., Cziegler, I., Greenwald, M., Hubbard, A. & Hughes, J. 2017 Fast low-to-high confinement mode bifurcation dynamics in a tokamak edge plasma gyrokinetic simulation. Phys. Rev. Lett. 118 (17), 175001.Google Scholar
Connor, J. W., Hastie, R. J., Wilson, H. R. & Miller, R. L. 1998 Magnetohydrodynamic stability of tokamak edge plasmas. Phys. Plasmas 5 (7), 2687.Google Scholar
Dimits, A., LoDestro, L. & Dubin, D. 1992 Gyroaveraged equations for both the gyrokinetic and drift-kinetic regimes. Phys. Fluids B 4 (1), 274.Google Scholar
Dorf, M. A., Cohen, R. H., Compton, J. C., Dorr, M., Rognlien, T. D., Angus, J., Krasheninnikov, S., Colella, P., Martin, D. & Mccorquodale, P. 2012 Progress with the COGENT edge kinetic code: collision operator options. Contrib. Plasma Phys. 52 (5), 518.Google Scholar
Dudson, B., Umansky, M., Xu, X., Snyder, P. & Wilson, H. 2009 BOUT++: a framework for parallel plasma fluid simulations. Comput. Phys. Commun. 180 (9), 1467.Google Scholar
Estève, D., Garbet, X., Sarazin, Y., Grandgirard, V., Cartier-Michaud, T., Dif-Pradalier, G., Ghendrih, P., Latu, G. & Norscini, C. 2015 A multi-species collisional operator for full-F gyrokinetics. Phys. Plasmas 22 (12), 122506.Google Scholar
Frei, B. J., Jorge, R. & Ricci, P.2019 A gyrokinetic model for the plasma periphery of tokamak devices. arXiv:1904.06863.Google Scholar
Gaunt, J. A. 1929 The triplets of helium. Phil. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 228 (659), 151.Google Scholar
Gradshteyn, I. S. & Ryzhik, M. 2007 Table of Integrals, Series, and Products. Elsevier.Google Scholar
Hahm, T. 1988 Nonlinear gyrokinetic equations for tokamak microturbulence. Phys. Fluids 31 (9), 2670.Google Scholar
Hahm, T., Wang, L. & Madsen, J. 2009 Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence. Phys. Plasmas 16 (2), 022305.Google Scholar
Hakim, A., Francisquez, M., Juno, J. & Hammet, G. W.2019 Conservative discontinuous Galerkin schemes for nonlinear Fokker–Planck collision operators. arXiv:1903.08062.Google Scholar
Halpern, F., Ricci, P., Jolliet, S., Loizu, J., Morales, J., Mosetto, A., Musil, F., Riva, F., Tran, T. & Wersal, C. 2016 The GBS code for tokamak scrape-off layer simulations. J. Comput. Phys. 315 (15), 388.Google Scholar
Helander, P. & Sigmar, D. 2005 Collisional Transport in Magnetized Plasmas. Cambridge University Press.Google Scholar
Hirshman, S. P. & Sigmar, D. J. 1976 Approximate Fokker–Planck collision operator for transport theory applications. Phys. Fluids 19 (10), 1532.Google Scholar
Jackson, J. 1998 Classical Electrodynamics. John Wiley & Sons.Google Scholar
Ji, J.-Y. & Held, E. D. 2006 Exact linearized Coulomb collision operator in the moment expansion. Phys. Plasmas 13 (10), 102103.Google Scholar
Ji, J.-Y. & Held, E. D. 2008 Landau collision operators and general moment equations for an electron–ion plasma. Phys. Plasmas 15 (10), 102101.Google Scholar
Ji, J.-Y. & Held, E. D. 2009 Full Coulomb collision operator in the moment expansion. Phys. Plasmas 16 (10), 102108.Google Scholar
Ji, J.-Y. & Held, E. D. 2014 Electron parallel closures for arbitrary collisionality. Phys. Plasmas 21 (12), 122116.Google Scholar
Ji, J.-Y., Held, E. D. & Jhang, H. 2013 Linearly exact parallel closures for slab geometry. Phys. Plasmas 20 (8), 082121.Google Scholar
Ji, J.-Y., Held, E. D. & Sovinec, C. 2009 Moment approach to deriving parallel heat flow for general collisionality. Phys. Plasmas 16 (2), 022312.Google Scholar
Jorge, R., Ricci, P., Brunner, S., Gamba, S., Konovets, V., Loureiro, N. F., Perrone, L. M. & Teixeira, N. 2019 Linear theory of electron-plasma waves at arbitrary collisionality. J. Plasma Phys. 85 (2), 905850211.Google Scholar
Jorge, R., Ricci, P. & Loureiro, N. F. 2017 A drift-kinetic analytical model for scrape-off layer plasma dynamics at arbitrary collisionality. J. Plasma Phys. 83 (6), 905830606.Google Scholar
Jorge, R., Ricci, P. & Loureiro, N. F. 2018 Theory of the drift-wave instability at arbitrary collisionality. Phys. Rev. Lett. 121 (16), 165001.Google Scholar
Landau, L. D. 1936 Kinetic equation for the Coulomb effect. Phys. Z. Sowjetunion 10 (154).Google Scholar
Li, B. & Ernst, D. R. 2011 Gyrokinetic Fokker–Planck collision operator. Phys. Rev. Lett. 106 (19), 195002.Google Scholar
Madsen, J. 2013 Gyrokinetic linearized Landau collision operator. Phys. Rev. E 87 (1), 011101(R).Google Scholar
Mandell, N. R., Dorland, W. & Landreman, M. 2018 Laguerre–Hermite pseudo-spectral velocity formulation of gyrokinetics. J. Plasma Phys. 84 (01), 905840108.Google Scholar
Mavromatis, H. A. & Alassar, R. S. 1999 A generalized formula for the integral of three associated Legendre polynomials. Appl. Math. Lett. 12 (3), 101.Google Scholar
McCoy, M. G., Mirin, A. A. & Killeen, J. 1981 FPPAC: A two-dimensional multispecies nonlinear Fokker–Planck package. Comput. Phys. Commun. 24 (1), 37.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W. 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
Pan, Q. & Ernst, D. R. 2019 Gyrokinetic Landau collision operator in conservative form. Phys. Rev. E 99 (2), 023201.Google Scholar
Pan, Q., Told, D., Shi, E., Hammett, G. W. & Jenko, F. 2018 Full- f version of GENE for turbulence in open-field-line systems. Phys. Plasmas 25 (6), 062303.Google Scholar
Paruta, P., Ricci, P., Riva, F., Wersal, C., Beadle, C. & Frei, B. 2018 Simulation of plasma turbulence in the periphery of diverted tokamak by using the GBS code. Phys. Plasmas 25 (11), 112301.Google Scholar
Qin, H., Cohen, R., Nevins, W. & Xu, X. 2007 Geometric gyrokinetic theory for edge plasmas. Phys. Plasmas 14 (5), 056110.Google Scholar
Qin, H., Cohen, R. H., Nevins, W. M. & Xu, X. Q. 2006 General gyrokinetic equations for edge plasmas. Contrib. Plasma Phys. 46 (7), 477.Google Scholar
Ricci, P. 2015 Simulation of the scrape-off layer region of tokamak devices. J. Plasma Phys. 81 (02), 435810202.Google Scholar
Ricci, P., Halpern, F. D., Jolliet, S., Loizu, J., Mosetto, A., Fasoli, A., Furno, I. & Theiler, C. 2012 Simulation of plasma turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation. Plasma Phys. Control. Fusion 54 (12), 124047.Google Scholar
Rosenbluth, M. N., MacDonald, W. M. & Judd, D. L. 1957 Fokker–Planck equation for an inverse-square force. Phys. Rev. 107 (1), 1.Google Scholar
Rutherford, P. H. & Frieman, E. A. 1968 Drift instabilities in general magnetic field configurations. Phys. Fluids 11 (3), 569.Google Scholar
Scott, B. D. 2002 The nonlinear drift wave instability and its role in tokamak edge turbulence. New J. Phys. 4 (52), 52.Google Scholar
Shi, E. L., Hammett, G. W., Stoltzfus-Dueck, T. & Hakim, A. 2017 Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma. J. Plasma Phys. 83 (03), 905830304.Google Scholar
Snider, R. F. 2017 Irreducible Cartesian Tensors. De Gruyter.Google Scholar
Start, D. F. H. 2002 Computational methods for kinetic models of magnetically confined plasmas. Comput. Phys. Commun. 46 (3), 453.Google Scholar
Stegmeir, A., Coster, D., Maj, O., Hallatschek, K. & Lackner, K. 2016 The field line map approach for simulations of magnetically confined plasmas. Comput. Phys. Commun. 198, 139.Google Scholar
Sugama, H., Watanabe, T. & Nunami, M. 2015 Effects of collisions on conservation laws in gyrokinetic field theory. Phys. Plasmas 22 (8), 082306.Google Scholar
Tamain, P., Ghendrih, P., Tsitrone, E., Sarazin, Y., Garbet, X., Grandgirard, V., Gunn, J., Serre, E., Ciraolo, G. & Chiavassa, G. 2009 3D modelling of edge parallel flow asymmetries. J. Nucl. Mater. 390 (1), 347.Google Scholar
Taylor, J. B. & Hastie, R. J. 1968 Stability of general plasma equilibria-I formal theory. Plasma Phys. 10, 479.Google Scholar
Tskhakaya, D. 2012 On recent massively parallelized PIC simulations of the SOL. Contrib. Plasma Phys. 52 (5), 490.Google Scholar
Weinert, U. 1980 Spherical tensor representation. Arch. Rat. Mech. Anal. 74 (2), 165.Google Scholar
Zettili, N. & Zahed, I. 2009 Quantum Mechanics: Concepts and Applications. John Wiley & Sons.Google Scholar
Zhu, B., Francisquez, M. & Rogers, B. N. 2018 GDB: a global 3D two-fluid model of plasma turbulence and transport in the tokamak edge. Comput. Phys. Commun. 232, 46.Google Scholar
Zocco, A. & Schekochihin, A. A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18 (10), 102309.Google Scholar
Zweben, S. J., Boedo, J. A., Grulke, O., Hidalgo, C., LaBombard, B., Maqueda, R. J., Scarin, P. & Terry, J. L. 2007 Edge turbulence measurements in toroidal fusion devices. Plasma Phys. Control. Fusion 49 (7), S1.Google Scholar