Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T05:10:31.972Z Has data issue: false hasContentIssue false

Prediction of skull base osteomyelitis in necrotising otitis externa with diffusion-weighted imaging

Published online by Cambridge University Press:  05 June 2020

A A K Abdel Razek*
Affiliation:
Department of Diagnostic Radiology, Mansoura University Faculty of Medicine, Mansoura, Egypt
W Mahmoud
Affiliation:
Department of Diagnostic Radiology, Mansoura University Faculty of Medicine, Mansoura, Egypt
*
Author for correspondence: Dr Ahmed Abdel Khalek Abdel Razek, Department of Diagnostic Radiology, Mansoura University Faculty of Medicine, Elgomheryia Street, Mansoura, Egypt3512 E-mail: arazek@mans.edu.eg Fax: +20 502 259 146

Abstract

Objective

To predict skull base osteomyelitis in patients with necrotising otitis externa using diffusion-weighted imaging.

Methods

A retrospective analysis was conducted of 25 necrotising otitis externa patients with skull base osteomyelitis (n = 10) or without skull base involvement (n = 14) who underwent a single-shot diffusion-weighted imaging of the skull base.

Results

The respective mean apparent diffusion coefficient values of the skull base, as determined by two reviewers, were 0.851 ± 0.15 and 0.841 ± 0.14 ×10-3mm2/s for the skull base osteomyelitis patients, and 1.065 ± 0.19 and 1.045 ± 0.20 ×10-3mm2/s for the necrotising otitis externa patients without skull base involvement. The difference in apparent diffusion coefficients between the groups was significant, for both reviewers (p = 0.008 and 0.012). The optimal threshold apparent diffusion coefficient for predicting skull base osteomyelitis in necrotising otitis externa patients was 0.945 ×10-3mm2/s and 0.915 ×10-3mm2/s, with an area under the curve of 0.825 and 0.800, accuracy of 87.5 and 83.3 per cent, sensitivity of 85.7 and 90.0 per cent, and specificity of 90.0 and 78.6 per cent, for each reviewer respectively.

Conclusion

Apparent diffusion coefficient is a non-invasive imaging parameter useful for predicting skull base osteomyelitis in necrotising otitis externa patients.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dr A A K Abdel Razek takes responsibility for the integrity of the content of the paper

References

Peled, C, El-Seid, S, Bahat-Dinur, A, Tzvi-Ran, LR, Kraus, M, Kaplan, D. Necrotizing otitis externa--analysis of 83 cases: clinical findings and course of disease. Otol Neurotol 2019;40:5662Google ScholarPubMed
Cooper, T, Hildrew, D, McAfee, JS, McCall, AA, Branstetter, BF 4th, Hirsch, BE. Imaging in the diagnosis and management of necrotizing otitis externa: a survey of practice patterns. Otol Neurotol 2018;39:597601CrossRefGoogle ScholarPubMed
Peled, C, Kraus, M, Kaplan, D. Diagnosis and treatment of necrotising otitis externa and diabetic foot osteomyelitis - similarities and differences. J Laryngol Otol 2018;132:775–9CrossRefGoogle ScholarPubMed
Hatch, JL, Bauschard, MJ, Nguyen, SA, Lambert, PR, Meyer, TA, McRackan, TR. Malignant otitis externa outcomes: a study of the University HealthSystem Consortium database. Ann Otol Rhinol Laryngol 2018;127:514–20Google ScholarPubMed
Khan, MA, Quadri, SAQ, Kazmi, AS, Kwatra, V, Ramachandran, A, Gustin, A et al. A comprehensive review of skull base osteomyelitis: diagnostic and therapeutic challenges among various presentations. Asian J Neurosurg 2018;13:959–70Google ScholarPubMed
Ridder, GJ, Breunig, C, Kaminsky, J, Pfeiffer, J. Central skull base osteomyelitis: new insights and implications for diagnosis and treatment. Eur Arch Otorhinolaryngol 2015;272:1269–76CrossRefGoogle ScholarPubMed
Le Clerc, N, Verillaud, B, Duet, M, Guichard, JP, Herman, P, Kania, R. Skull base osteomyelitis: incidence of resistance, morbidity, and treatment strategy. Laryngoscope 2014;124:2013–16CrossRefGoogle ScholarPubMed
Kornilenko, L, Rocka, S, Balseris, S, Arechvo, I. Clinical challenges in the diagnosis and treatment of temporal bone osteomyelitis. Case Rep Otolaryngol 2017;2017:4097973Google ScholarPubMed
Chen, JC, Yeh, CF, Shiao, S, Tu, TY. Temporal bone osteomyelitis: the relationship with malignant otitis externa, the diagnostic dilemma, and changing trends. ScientificWorldJournal 2014;2014:591714Google ScholarPubMed
van Kroonenburgh, AMJL, van der Meer, WL, Bothof, RJP, van Tilburg, M, van Tongeren, J, Postma, AA. Advanced imaging techniques in skull base osteomyelitis due to malignant otitis externa. Curr Radiol Rep 2018;6:3CrossRefGoogle ScholarPubMed
Adams, A, Offiah, C. Central skull base osteomyelitis as a complication of necrotizing otitis externa: imaging findings, complications, and challenges of diagnosis. Clin Radiol 2012;67:e716Google ScholarPubMed
Razek, AA, Huang, BY. Lesions of the petrous apex: classification and findings at CT and MR imaging. Radiographics 2012;32:151–73CrossRefGoogle ScholarPubMed
Goh, JPN, Karandikar, A, Loke, SC, Tan, TY. Skull base osteomyelitis secondary to malignant otitis externa mimicking advanced nasopharyngeal cancer: MR imaging features at initial presentation. Am J Otolaryngol 2017;38:466–71CrossRefGoogle ScholarPubMed
Lee, JE, Song, JJ, Oh, SH, Chang, SO, Kim, CH, Lee, JH. Prognostic value of extension patterns on follow-up magnetic resonance imaging in patients with necrotizing otitis externa. Arch Otolaryngol Head Neck Surg 2011;137:688–93CrossRefGoogle ScholarPubMed
Rozenblum-Beddok, L, Verillaud, B, Paycha, F, Vironneau, P, Abulizi, M, Benada, A et al. 99mTc-HMPAO-leukocyte scintigraphy for diagnosis and therapy monitoring of skull base osteomyelitis. Laryngoscope Investig Otolaryngol 2018;3:218–24CrossRefGoogle ScholarPubMed
Abdel Razek, AA, Kamal, E. Nasopharyngeal carcinoma: correlation of apparent diffusion coefficient value with prognostic parameters. Radiol Med 2013;118:534–9CrossRefGoogle ScholarPubMed
Abdel Razek, A, Mossad, A, Ghonim, M. Role of diffusion-weighted MR imaging in assessing malignant versus benign skull-base lesions. Radiol Med 2011;116:125–32CrossRefGoogle ScholarPubMed
Connolly, M, Srinivasan, A. Diffusion-weighted imaging in head and neck cancer technique, limitations, and applications. Magn Reson Imaging Clin N Am 2018;26:121–33CrossRefGoogle ScholarPubMed
Abd-El Khalek Abd-ALRazek, A, Fahmy, DM. Diagnostic value of diffusion-weighted imaging and apparent diffusion coefficient in assessment of the activity of Crohn disease: 1.5 or 3 T. J Comput Assist Tomogr 2018;42:688–96CrossRefGoogle ScholarPubMed
Schmid-Tannwald, C, Schmid-Tannwald, CM, Morelli, JN, Albert, NL, Braunagel, M, Trumm, C et al. The role of diffusion-weighted MRI in assessment of inflammatory bowel disease. Abdom Radiol 2016;41:1484–94CrossRefGoogle ScholarPubMed
Ozgen, B, Oguz, KK, Cila, A. Diffusion MR imaging features of skull base osteomyelitis compared with skull base malignancy. AJNR Am J Neuroradiol 2011;32:179–8410.3174/ajnr.A2237CrossRefGoogle ScholarPubMed
Daghighi, MH, Poureisa, M, Safarpour, M, Behzadmehr, R, Fouladi, DF, Meshkini, A et al. Diffusion-weighted magnetic resonance imaging in differentiating acute infectious spondylitis from degenerative Modic type 1 change; the role of b-value, apparent diffusion coefficient, claw sign and amorphous increased signal. Br J Radiol 2016;89:20150152CrossRefGoogle ScholarPubMed
Abdel Razek, A, Samir, S. Diagnostic performance of diffusion-weighted MR imaging in differentiation of diabetic osteoarthropathy and osteomyelitis in diabetic foot. Eur J Radiol 2017;89:221–5CrossRefGoogle ScholarPubMed
Lingam, RK, Bassett, P. A meta-analysis on the diagnostic performance of non-echoplanar diffusion-weighted imaging in detecting middle ear cholesteatoma: 10 years on. Otol Neurotol 2017;38:521–8CrossRefGoogle Scholar
Razek, AAKA. Assessment of masses of the external ear with diffusion-weighted MR imaging. Otol Neurotol 2018;39:227–31CrossRefGoogle ScholarPubMed
Cherko, M, Nash, R, Singh, A, Lingam, RK. Diffusion-weighted magnetic resonance imaging as a novel imaging modality in assessing treatment response in necrotizing otitis externa. Otol Neurotol 2016;37:704–7CrossRefGoogle ScholarPubMed
Prasad, SC, Prasad, KC, Kumar, A, Thada, ND, Rao, P, Chalasani, S. Osteomyelitis of the temporal bone: terminology, diagnosis, and management. J Neurol Surg B 2014;75:324–31CrossRefGoogle ScholarPubMed
Abdel Razek, AA, Nada, N. Role of diffusion-weighted MRI in differentiation of masticator space malignancy from infection. Dentomaxillofac Radiol 2013;42:20120183CrossRefGoogle ScholarPubMed
Razek, AA, Sieza, S, Maha, B. Assessment of nasal and paranasal sinus masses by diffusion-weighted MR imaging. J Neuroradiol 2009;36:206–11CrossRefGoogle ScholarPubMed
Razek, AA. Diffusion-weighted magnetic resonance imaging of head and neck. J Comput Assist Tomogr 2010;34:808–15CrossRefGoogle ScholarPubMed
Abdel Razek, AA, Soliman, N, Elashery, R. Apparent diffusion coefficient values of mediastinal masses in children. Eur J Radiol 2012;81:1311–14CrossRefGoogle ScholarPubMed
Razek, AAA. Ashmalla G. Assessment of paraspinal neurogenic tumors with diffusion-weighted MR imaging. Eur Spine J 2018;27:841–6CrossRefGoogle ScholarPubMed
Surov, A, Nagata, S, Razek, AA, Tirumani, SH, Wienke, A, Kahn, T. Comparison of ADC values in different malignancies of the skeletal musculature: a multicentric analysis. Skeletal Radiol 2015;44:9951000CrossRefGoogle ScholarPubMed
Razek, AA, Lattif, MA, Denewer, A, Farouk, O, Nada, N. Assessment of axillary lymph nodes in patients with breast cancer with diffusion-weighted MR imaging in combination with routine and dynamic contrast MR imaging. Breast Cancer 2016;23:525–32CrossRefGoogle ScholarPubMed
Guler, E, Ozgen, B, Mut, M, Soylemezoglu, F, Oguz, KK. The added value of diffusion magnetic resonance imaging in diagnosis and posttreatment evaluation of skull base chordoma. J Neurol Surg B Skull Base 2017;78:256–65CrossRefGoogle Scholar
Abdel Razek, AAK, Elkhamary, SM, Nada, N. Correlation of apparent diffusion coefficient with histopathological parameters of salivary gland cancer. Int J Oral Maxillofac Surg 2019;48:9951000CrossRefGoogle ScholarPubMed
Razek, AAKA. Prediction of malignancy of submandibular gland tumors with apparent diffusion coefficient. Oral Radiol 2019;35:1115CrossRefGoogle ScholarPubMed
Soni, N, Gupta, N, Kumar, Y, Mangla, M, Mangla, R. Role of diffusion-weighted imaging in skull base lesions: a pictorial review. Neuroradiology J 2017;30:370–84CrossRefGoogle ScholarPubMed
Razek, AA, Nada, N. Correlation of choline/creatine and apparent diffusion coefficient values with the prognostic parameters of head and neck squamous cell carcinoma. NMR Biomed 2016;29:483–9CrossRefGoogle ScholarPubMed
Abdel Razek, AAK. Routine and advanced diffusion imaging modules of the salivary glands. Neuroimaging Clin N Am 2018;28:245–54CrossRefGoogle ScholarPubMed
Razek, AAKA. Diffusion tensor imaging in differentiation of residual head and neck squamous cell carcinoma from post-radiation changes. Magn Reson Imaging 2018;54:84–9Google ScholarPubMed
El-Serougy, L, Abdel Razek, AA, Ezzat, A, Eldawoody, H, El-Morsy, A. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neuroradiol J 2016;29:400–7CrossRefGoogle ScholarPubMed
Abdel Razek, AAK. Arterial spin labelling and diffusion-weighted magnetic resonance imaging in differentiation of recurrent head and neck cancer from post-radiation changes. J Laryngol Otol 2018;132:923–8CrossRefGoogle ScholarPubMed
Razek, AA, Gaballa, G, Megahed, AS, Elmogy, E. Time resolved imaging of contrast kinetics (TRICKS) MR angiography of arteriovenous malformations of head and neck. Eur J Radiol 2013;82:1885–91CrossRefGoogle ScholarPubMed
Abdel Razek, AA, Samir, S, Ashmalla, GA. Characterization of parotid tumors with dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging and diffusion-weighted MR imaging. J Comput Assist Tomogr 2017;41:131–6CrossRefGoogle ScholarPubMed
Allam, H, Abdel Razek, A, Ashraf, B, Khaled, M. Reliability of diffusion-weighted MR imaging in differentiation of recurrent cholesteatoma and granulation tissue after intact canal wall mastoidectomy. J Laryngol Otol 2019;133:1083–6CrossRefGoogle ScholarPubMed