Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-06T19:54:20.463Z Has data issue: false hasContentIssue false

Reduction of benzimidazole resistance in established Haemonchus contortus populations in goats using a single infection with a benzimidazole-susceptible isolate

Published online by Cambridge University Press:  16 September 2014

J.I. Chan-Pérez
Affiliation:
Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, México
J.F.J. Torres-Acosta*
Affiliation:
Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, México
R.I. Rodríguez-Vivas
Affiliation:
Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, México
S.L. Villegas-Pérez
Affiliation:
Campus de Ciencias Biológicas y Agropecuarias, FMVZ, Universidad Autónoma de Yucatán, Km 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, México
*
*Fax: +52-999-942-32-05E-mail: tacosta@uady.mx

Abstract

An in vivo study in goats evaluated the effect of superimposing a single artificial infection with a benzimidazole (BZ)-susceptible Haemonchus contortus isolate upon established H. contortus populations of known BZ resistance by measuring the phenotypic BZ resistance of eggs collected from faeces before and after re-infection. Two H. contortus isolates, one benzimidazole resistant (BZR) and the other susceptible (BZS), were used to infect worm-free goats. Eight goats were initially infected with 2000 third-stage larvae (L3). In each case the inoculum contained a pre-determined proportion of the two isolates: 100% BZS (one goat), 75% BZS/25% BZR (two goats), 50% BZS/50% BZR (two goats), 25%BZS/75% BZR (two goats) and, finally, 100% BZR (one goat). The phenotypic BZ susceptibility of the H. contortus population formed in each goat after the first infection was determined on days 30 and 36 post-infection using an egg-hatch assay (EHA) that estimated the concentration of thiabendazole (TBZ) required for 95% inhibition of larval hatching (EC95) with a 95% confidence interval (95% CI). On day 49 post-infection, goats were re-infected with 2000 L3 of the BZS isolate alone. A second set of EHA bioassays was performed 28 days and 34 days after re-infection. The first infection protocol produced three populations classified as BZS (EC95 0.055–0.065 μg TBZ/ml) while four were categorized as BZR (EC95 0.122–0.344 μg TBZ/ml). The status of one other population could not be determined. After re-infection with BZS L3, the number of susceptible populations increased to six (EC95 0.043–0.074 μg TBZ/ml) while the remaining two were deemed resistant (EC95 0.114–119 μg TBZ/ml). Re-infection with BZS L3 thereby reduced the resistance status of most H. contortus populations.

Type
Short Communications
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, J., Shulaw, W.P., Pope, W.F. & Bremer, C.A. (2001) Control of anthelmintic resistant endoparasites in a commercial sheep flock through parasite community replacement. Veterinary Parasitology 97, 219225.CrossRefGoogle Scholar
Coles, G.C., Bauer, C., Borgsteede, F.H.M., Geerts, S., Klei, T.R., Taylor, M.A. & Waller, P.J. (1992) World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 44, 3544.CrossRefGoogle ScholarPubMed
Jabbar, A., Iqbal, Z., Kerboeuf, D., Muhammad, G., Muhammad, K. & Afaq, M. (2006) Anthelmintic resistance: The state of play revisited. Life Science 79, 24132431.CrossRefGoogle ScholarPubMed
Königová, A., Hrčkova, G., Velebný, S., Čorba, J. & Várady, M. (2008) Experimental infection of Haemonchus contortus strains resistant and susceptible to benzimidazoles and the effect on mast cells distribution in the stomach of Mongolian gerbils (Meriones unguiculatus). Parasitology Research 102, 587595.CrossRefGoogle ScholarPubMed
Maingi, N., Scott, M.E. & Prichard, R.K. (1990) Effect of selection pressure for thiabendazole resistance on fitness of Haemonchus contortus in sheep. Parasitology 100, 327333.CrossRefGoogle ScholarPubMed
Moussavou-Boussougou, M.N., Silvestre, A., Cortet, J., Sauve, C. & Cabaret, J. (2007) Substitution of benzimidazole resistant nematodes for susceptible nematodes in grazing lambs. Parasitology 134, 553560.CrossRefGoogle ScholarPubMed
Le Jambre, L.F., Royal, W.M. & Martin, P.J. (1979) The inheritance of thiabendazole resistance in Haemonchus contortus. Parasitology 78, 107119.CrossRefGoogle ScholarPubMed
LeOra Software, (2004) Polo Plus. Probit and logit analysis. Berkeley, California, USA, LeOra Software.Google Scholar
Rodríguez-Vivas, R.I. & Cob-Galera, L.A. (2005) Técnicas diagnósticas en parasitología veterinaria. 2nd edn. 306 pp. Mérida, México, Universidad Autónoma de Yucatán.Google Scholar
Sangster, N. & Dobson, R.J. (2002) Anthelmintic resistance. pp. 531567in Lee, D.L. (Ed.) The biology of nematodes. London, Taylor and Francis.CrossRefGoogle Scholar
Silvestre, A., Cabaret, J. & Humbert, J.F. (2001) Effect of benzimidazole under-dosing on the resistant allele frequency in Teladorsagia circumcincta (Nematoda). Parasitology 123, 103111.CrossRefGoogle ScholarPubMed
Sissay, M.M., Asefa, A., Uggla, A. & Waller, P.J. (2006) Anthelmintic resistance of nematode parasites of small ruminants in eastern Ethiopia: Exploitation of refugia to restore anthelmintic efficacy. Veterinary Parasitology 135, 337346.CrossRefGoogle ScholarPubMed
Sutherland, I.A. & Leathwick, D.M. (2010) Anthelmintic resistance in nematode parasites of cattle: a global issue? Trends in Parasitology 27, 176181.CrossRefGoogle ScholarPubMed
Torres-Acosta, J.F.J. & Hoste, H. (2008) Alternative or improved methods to limit gastrointestinal parasitism in grazing sheep and goats. Small Ruminant Research 77, 159173.CrossRefGoogle Scholar
Torres-Acosta, J.F.J., Mendoza-de-Gives, P., Aguilar-Caballero, A.J. & Cuéllar-Ordaz, J.A. (2012) Anthelmintic resistance in sheep farms: update of the situation in the American continent. Veterinary Parasitology 189, 8996.CrossRefGoogle ScholarPubMed
Van Wyk, J.A. & Van Schalkwyk, P.C. (1990) A novel approach to the control of anthelmintic resistant Haemonchus contortus in sheep. Veterinary Parasitology 35, 6169.CrossRefGoogle Scholar
von Samson-Himmelstjerna, G., Coles, G.C., Jackson, F., Bauer, C., Borgsteede, F., Cirak, V.Y., Demeler, J., Donnan, A., Dorny, P., Epe, C., Harder, A., Höglund, J., Kaminsky, R., Kerboeuf, D., Küttler, U., Papadopoulos, E., Posedi, J., Small, J., Várady, M., Vercruysse, J. & Wirtherle, N. (2009) Standardization of the egg hatch test for the detection of benzimidazole resistance in parasitic nematodes. Parasitology Research 105, 825834.CrossRefGoogle ScholarPubMed
Winterrowd, C.A., Pomroy, W.E., Sangster, N.C., Johnson, S.S. & Geary, T.G. (2003) Benzimidazole-resistant β-tubulin alleles in a population of parasitic nematodes (Cooperia oncophora) of cattle. Veterinary Parasitology 117, 161172.CrossRefGoogle Scholar