Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T08:38:33.378Z Has data issue: false hasContentIssue false

The morphology and genetic characterization of Iheringascaris goai n. sp. (Nematoda: Raphidascarididae) from the intestine of the silver whiting and spotted catfish off the central west coast of India

Published online by Cambridge University Press:  17 August 2011

A. Malhotra*
Affiliation:
Department of Zoology, University of Allahabad, Allahabad211002, UP, India
N. Jaiswal
Affiliation:
Department of Zoology, Nehru Gram Bharati University, Allahabad, UP, India
A.K. Malakar
Affiliation:
National Bureau of Fish Genetic Resources, Canal Ring Road, PO Dilkusha, Lucknow, UP, India
M.S. Verma
Affiliation:
National Bureau of Fish Genetic Resources, Canal Ring Road, PO Dilkusha, Lucknow, UP, India
H.R. Singh
Affiliation:
College of Fisheries, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
W.S. Lakra
Affiliation:
National Bureau of Fish Genetic Resources, Canal Ring Road, PO Dilkusha, Lucknow, UP, India
S.K. Malhotra
Affiliation:
Department of Zoology, University of Allahabad, Allahabad211002, UP, India
S. Shamsi
Affiliation:
School of Animal and Veterinary Sciences, Charles Sturt University, Borooma St, Estella, New South Wales2678, Australia

Abstract

In this study a new species of nematode, Iheringascaris goai n. sp., is reported from two fish hosts, including silver whiting, Sillago sihama, and spotted catfish, Arius maculatus, caught off the Central West Coast of India at Goa. The new species can be differentiated morphologically from I. inquies, the most closely related species collected from cohabiting marine fish. The distinguishing characteristics are distinct cuticular striations, a unilateral excretory system, the presence of dentigerous ridges on the inner margin of the lips and the ratio of oesophagus to body length. In males, the ratio of spicules to body length is higher and the number of pre-anal papillae is less in comparison to those in I. inquies. In addition, the tail curves ventrad in males, while in females, the vulva is post-equatorial. The sequence alignment of 18S rDNA and cytochrome c oxidase subunit I with sequences of known species selected from the same superfamily shows a significant difference. The morphological and molecular differences reported here can, therefore, be used to assign the specimen to a new species.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akther, M., Alam, A., D'Silva, J., Bhuiyan, A.L., Bristow, G.A. & Berland, B. (2004) Goezia bangladeshi n. sp. (Nematoda: Anisakidae) from an anadromous fish Tenualosa ilisha (Clupeidae). Journal of Helminthology 78, 105113.CrossRefGoogle Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle ScholarPubMed
Anderson, R.C., Chabaud, A.G., & Willmott, S.( Eds) (1974) CIH Keys to the nematode parasites of vertebrates. No. 2. Keys to genera of the Ascaridoidea. pp. 115. Farnham Royal, UK, Commonwealth Agriculture Bureaux.Google Scholar
Bruce, N.L. & Cannon, L.R.G. (1989) Hysterothylacium, Iheringascaris and Maricostula new genus, nematodes (Ascaridoidea) from Australian pelagic marine fishes. Journal of Natural History 23, 13971441.CrossRefGoogle Scholar
Bruce, N.L. & Cannon, L.R.G. (1990) Ascaridoid nematodes from sharks from Australia and the Solomon Islands, Southwestern Pacific Ocean. Invertebrate Taxonomy 4, 763783.CrossRefGoogle Scholar
Damin, L. & Heqing, H. (2001) Heliconema minnanesis n. sp. (Physalopteridae) and Raphidascaris trichiuri (Yin and Zhang) n. comb. (Ascaridoidea: Anisakidae) in marine fishes. Journal of Parasitology 87, 10901094.CrossRefGoogle Scholar
Deardorff, T.L. & Overstreet, R.M. (1980) Taxonomy and biology of North American species of Goezia (Nematoda: Anisakidae) from fishes, including three new species. Proceedings of Helminthological Society of Washington 47, 192217.Google Scholar
Deardorff, T.L. & Overstreet, R.M. (1981) Review of Hysterothylacium and Iheringascaris (both previously Thynnascaris) (Nematoda: Anisakidae) from the Northern Gulf of Mexico. Proceedings of the Biological Society of Washington 93, 10351079.Google Scholar
Dollfus, R.P. (1933) Thynnascaris legendrei n.sp. de l'estomac du germon, Germo alalonga (Gmel.). Bulletin de la Société Zoologique de France 58, 713.Google Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Floyd, R.M., Rogers, A.D., Lambshead, P.J.D. & Smith, C.R. (2005) Nematode-specific PCR primers for the 18S small subunit rRNA gene. Molecular Ecology Notes 5, 611612.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology & Biotechnology 3, 294299.Google ScholarPubMed
Fujita, T. (1940) Further notes on nematodes of salmonoid fishes in Japan. Japanese Journal of Zoology 8, 377394.Google Scholar
Gibson, D.I. (1983) The systematics of ascaridoid nematodes – a current assessment. pp. 321338in Stone, A.R., Platt, H.M. & Khalil, L.F. (Eds) Concepts in nematode systematics. Systematics Association Special Volume No. 22. London, Academic Press.Google Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symposium Series 41, 9598.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. & de Waard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society: B Biological Sciences 270, 313322.CrossRefGoogle ScholarPubMed
Jex, A.R., Waeschenbach, A., Littlewood, D.T., Hu, M. & Gasser, R.B. (2008) The mitochondrial genome of Toxocara canis. PLoS Neglected Tropical Diseases 2, E273.CrossRefGoogle ScholarPubMed
Jex, A.R., Waeschenbach, A., Hu, M., van Wyk, J.A., Beveridge, I., Littlewood, D.T. & Gasser, R.B. (2009) The mitochondrial genomes of Ancylostoma caninum and Bunostomum phlebotomum – two hookworms of animal health and zoonotic importance. BMC Genomics 10, 79.CrossRefGoogle ScholarPubMed
Kalyankar, S.D. (1971) Thynnascaris carangis sp. n., a new nematode (Nematoda, Stomachidae, Raphidascaridinae) from an Indian fish Caranx malabaricus Day. Acta Parasitologica Polonica 19, 147150.Google Scholar
Kalyankar, S.D. (1972) A report on Thynnascaris inquies (Linton, 1910) Rasheed, 1965 from India (Ascarididea: Stomachidae). Marathwada University Journal of Science 11, 9598.Google Scholar
Khan, D. & Begum, A. (1971) Helminth parasites of fishes from West Pakistan. Nematodes. Bulletin of Department of Zoology of the University of Punjab 1, 112.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Linton, E. (1901) Parasites of fishes of the Woods Hole region. Bulletin of the United States Fisheries Committee (1989) 19, 267304.Google Scholar
Malhotra, S.K. (1986) Bioecology of the parasites of high altitude homeothermic host–parasite systems. I. Influence of season and temperature on infection by strobilocerci of three species of Hydatigera in Indian rat host. Journal of Helminthology 60, 1520.CrossRefGoogle Scholar
Moravec, F., Nagasawa, K. & Urawa, S. (1985) Some fish nematodes from fresh waters in Hokkaido, Japan. Folia Prasitologica (Prague) 32, 305316.Google Scholar
Mozgovoi, A.A. (1950) Ascaridata of animals. Trudy Gel'mintologie Laboratorie Akademia Nauk, USSR 4, 263269.Google Scholar
Nadler, S.A. & Hudspeth, D.S.S. (1998) Ribosomal DNA and phylogeny of the Ascaridoidea (Nematoda: Secernentea): implications for morphological evolution and classification. Molecular Phylogeny & Evolution 10, 221236.CrossRefGoogle ScholarPubMed
Nadler, S.A., Carreno, R.A., Mejia-Madrid, H., Ullberg, J., Pagan, C., Houston, R. & Hugot, J.P. (2007) Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology 13, 14211442.CrossRefGoogle Scholar
Okimoto, R., Macfarlane, J.L. & Wolstenholme, D.R. (1990) Evidence for the frequent use of TTG as the translation initiation codon of mitochondrial protein genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucleic Acids Research 18, 61136118.CrossRefGoogle ScholarPubMed
Paggi, L., Mattiucci, S. & D'Amelio, S. (2001) Allozyme and PCR-RFLP markers in anisakid nematodes, aetiological agents of human anisakidosis. Parassitologia 43, 2127.Google Scholar
Pereira, C. (1935) Ascaridata e Spirurata parasites de peixes do nordeste Brasileiro. Archivos del Instituto de Biología Andina 6, 5362.Google Scholar
Rasheed, S. (1965) On a remarkable new nematode, Lappetascaris lutjani gen. et sp. nov. (Anisakidae: Ascaridoidea) from marine fishes of Karachi and an account of Thynnascaris inquires (Linton, 1901) n. comb. and Goezia intermedia n. sp. Journal of Helminthology 39, 313342.CrossRefGoogle Scholar
Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology & Evolution 4, 406425.Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2nd edn.1659 pp. New York, Cold Spring Harbor Laboratory Press.Google Scholar
Santamaria, M., Lanave, C., Vicario, S. & Saccone, C. (2007) Variability of the mitochondrial genome in mammals at the inter-species/intra-species boundary. Biological Chemistry 388, 943946.CrossRefGoogle ScholarPubMed
Shamsi, S., Norman, R., Gasser, R. & Beveridge, I. (2009a) Genetic and morphological evidences for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) (Nematoda: Anisakidae) in Australia. Parasitology Research 105, 529538.CrossRefGoogle ScholarPubMed
Shamsi, S., Norman, R., Gasser, R. & Beveridge, I. (2009b) Redescription and genetic characterization of selected Contracaecum spp. (Nematoda: Anisakidae) from various hosts in Australia. Parasitology Research 104, 15071525.CrossRefGoogle ScholarPubMed
Soota, T.D. (1983) Studies on nematode parasites of Indian vertebrates. I. Fisheries Records of the Zoological Survey of India. Miscellaneous Publications Occasional Paper 54, ixii, 1–352.Google Scholar
Sprent, J.F.A. (1983) Observations on the systematics of ascaridoid nematodes. pp. 303319in Stone, A.R., Platt, H.M. & Khalil, L. (Eds) Concepts in nematode systematics. Systematics Association Special Volume No. 22. London, Academic Press.Google Scholar
Sukhdeo, S.C., Sukhdeo, M.V.K., Black, M.B. & Vrijenhoek, R.C. (1997) The evolution of tissue migration in parasitic nematodes (Nematoda: Strongylida). Biological Journal of the Linnean Society London 61, 281298.CrossRefGoogle Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology & Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgens, D.G. (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882.CrossRefGoogle Scholar
Ward, H.B. & Magath, T.B. (1917) Notes on some nematodes from freshwater fishes. Journal of Parasitology 3, 5765.CrossRefGoogle Scholar
Yamaguti, S. (1961) Systema Helminthum. 3. The nematodes of vertebrates. Parts 1 and 2. 1261 pp. New York, Interscience Publications.Google Scholar
Zhang, D.X. & Hewitt, G.M. (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecology Evolution 11, 247251.CrossRefGoogle ScholarPubMed