Published online by Cambridge University Press: 20 April 2006
Oscillations of a cavity shear layer, involving a downstream-travelling wave and associated vortex formation, its impingement upon the cavity corner, and upstream influence of this vortex-corner interaction are the subject of this experimental investigation.
Spectral analysis of the downstream-travelling wave reveals low-frequency components having substantial amplitudes relative to that of the fundamental (instability) frequency component; using bicoherence analysis it is shown that the lowest-frequency component can interact with the fundamental either to reinforce itself or to produce an additional (weaker) low-frequency component. In both cases, all frequency components exhibit an overall phase difference of almost 2kπ(k = 1, 2,…) between separation and impingement. Furthermore, the low-frequency and fundamental components have approximately the same amplitude growth rates and phase speeds; this suggests that the instability wave is amplitude-modulated at the low frequency, as confirmed by the form of instantaneous velocity traces.
At the downstream corner of the cavity, successive vortices, arising from the amplified instability wave, undergo organized variations in (transverse) impingement location, producing a low-frequency component(s) of corner pressure. The spectral content and instantaneous trace of this impingement pressure are consistent with those of velocity fluctuations near the (upstream) shear-layer separation edge, giving evidence of the strong upstream influence of the corner region.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.