Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-03T22:55:45.761Z Has data issue: false hasContentIssue false

Binding of Mg2+ and Ca2+ to β-casein A1: a multi-nuclear magnetic resonance study

Published online by Cambridge University Press:  01 June 2009

N. Magnus Wahlgren
Affiliation:
Department of Food Technology, University of Lund, PO Box 124, S-221 00 Lund, Sweden
Petr Dejmek
Affiliation:
Department of Food Engineering, University of Lund, PO Box 124, S-221 00 Lund, Sweden
Torbjörn Drakenberg
Affiliation:
Department of Physical Chemistry 2, Chemical Center, University of Lund, PO Box 124, S-221 00 Lund, Sweden Chemical Laboratory, The Technical Research Center of Finland (VTT), PO Box 204, SF-0 2151 Espoo, Finland

Summary

25Mg, 43Ca and 31P NMR have been used to study the binding of Mg2+ and Ca2+ ions to β-casein A1. The concentration dependence of the line width of the 25Mg NMR signal shows that β-casein contains at least two different types of binding sites for Mg2+ ions, one with strongly bound, slowly exchanging ions and one with more weakly bound ions which undergo fast exchange. The strong Mg2+ binding site has an unexpectedly high binding constant, Kbstrong 104 M–1, which has not been reported earlier. Mg2+ and Ca2+ compete for the Ca2+ binding sites of β-casein, while Na+ does not compete for these binding sites under physiological conditions. The dependence of the 43Ca NMR chemical shifts on total concentration of Mg2+ and Ca2+, in the presence of β-casein, could be equally well fitted with a model assuming up to five identical and independent sites as with a model assuming five or more sites with negative cooperativity. The proton dissociation constant, pka, for the strongest Ca2+ binding site was found to be 7·1.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersson, T., Drakenberg, T., Forsén, S., Thulin, E. & Swärd, M. 1982 Direct observation of the 43Ca NMR signals from Ca2+ ions bound to proteins. Journal of the American Chemical Society 104 576580Google Scholar
Barrefors, P., Ekstrand, B., Fägerstam, L., Larsson-Raznikiewicz, M., Schaar, J. & Steffner, P. 1985 Fast protein liquid chromatography (FPLC) of bovine caseins. Milchwissenschaft 40 257260Google Scholar
Baumy, J.-J., Guenot, P., Sinbandhit, S. & Brulé, G. 1989 Study of calcium binding to phosphoserine residues of β-casein and its phosphopeptide (1–25) by 31P NMR. Journal of Dairy Research 56 403409CrossRefGoogle Scholar
Belton, P. S. & Lyster, R. L. J. 1991 31P nuclear magnetic resonance spectra of milk from various species. Journal of Dairy Research 58 443451CrossRefGoogle ScholarPubMed
Belton, P. S., Lyster, R. L. J. & Richards, C. P. 1985 The 31P nuclear magnetic resonance spectrum of cows' milk. Journal of Dairy Research 52 4754Google Scholar
Braunlin, W. H., Drakenberg, T. & Forsén, S. 1985 Metal ion NMR: application to biological systems. In Current Topics in Bioenergetics vol. 14 pp. 97147 (Ed. Lee, C. P.). Orlando, FL: Academic PressGoogle Scholar
Creamer, L. K., Richardson, T. & Parry, D. A. D. 1981 Secondary structure of bovine αs1- and β-casein in solution. Archives of Biochemistry and Biophysics 211 689696CrossRefGoogle Scholar
Demott, B. J. & Dincer, B. 1976 Binding added iron to various milk proteins. Journal of Dairy Science 59 15571559CrossRefGoogle ScholarPubMed
Dickson, I. R. & Perkins, D. J. 1971 Studies on the interactions between purified bovine caseins and alkaline-earth metal ions. Biochemical Journal 124 235240Google Scholar
Drakenberg, T. & Forsén, S. 1982 The alkaline earth-metals—biological applications. In The Multinuclear Approach to NMR Spectroscopy; pp. 309328 (Eds Lambert, J. B. & Riddell, F. G.). Dordrecht: D. ReidelGoogle Scholar
Drakenberg, T., Forsén, S. & Lilja, H. 1983 43Ca NMR studies of calcium binding to proteins: interpretation of experimental data by bandshape analysis. Journal of Magnetic Resonance 53 412422Google Scholar
Farrell, H. M. & Thompson, M. P. 1988 The caseins of milk as calcium-binding proteins. In Calcium Binding Proteins, vol. II, pp. 117137 (Ed. Thompson, M. P.). Boca Raton, FL: CRC PressGoogle Scholar
Fox, P. F. & Guiney, J. 1972 A procedure for the partial fractionation of the αs-casein complex. Journal of Dairy Research 39 4953CrossRefGoogle Scholar
Graham, E. R. B., Malcolm, G. N. & McKenzie, H. A. 1984 On the isolation and conformation of bovine β-casin A1. International Journal of Biological Macromolecules 6 155161Google Scholar
Holt, C. & Sawyer, L. 1988 Primary and predicted secondary structures of the caseins in relation to their biological functions. Protein Engineering 2 251259CrossRefGoogle ScholarPubMed
Humphrey, R. S. & Jolley, K. W. 1982 31P-NMR studies of bovine β-casein. Biochimica et Biophysica Acta 708 294299Google Scholar
Kakalis, L. T., Kumosinski, T. F. & Farrell, H. M. 1990 A multi-nuclear, high-resolution NMR study of bovine casein micelles and submicelles. Biophysical Chemistry 38 8798Google Scholar
Parker, T. G. & Dalgleish, D. G. 1981 Binding of calcium ions to bovine β-casein. Journal of Dairy Research 48 7176Google Scholar
Schmidt, D. G., Both, P., Visser, S., Slangen, K. J. & Van Rooijen, P. J. 1987 Studies on the precipitation of calcium phosphate. II. Experiments in the pH range 7·3 to 5·8 at 25 and 50 °C in the presence of additives. Netherlands Milk and Dairy Journal 41 121136Google Scholar
Schmidt, D. G. & Payens, T. A. J. 1976 Micellar aspects of casein. Surface and Colloid Science 9 165229Google Scholar
Singh, H., Flynn, A. & Fox, P. F. 1989 Binding of zinc to bovine and human milk proteins. Journal of Dairy Research 56 235248CrossRefGoogle ScholarPubMed
Sleigh, R. W., Mackinlay, A. G. & Pope, J. M. 1983 NMR studies of the phosphoserine regions of bovine αs1- and β-casein. Assignment of 31P resonances to specific phosphoserines and cation-binding studied by measurement of enhancement of 1H relaxation rate. Biochimica et Biophysica Acta 742 175183CrossRefGoogle Scholar
Sleigh, R. W., Sculley, T. B. & Mackinlay, A. G. 1979 The binding of β-casein to hydroxyapatite: the effect of phosphate content and location. Journal of Dairy Research 46 337342CrossRefGoogle ScholarPubMed
Snoeren, T. H. M., van der Spek, C. A. & Payens, T. A. J. 1977 Preparation of κ and minor αs-casein by electrostatic affinity chromatography. Biochimica et Biophysica Acta 490 255259CrossRefGoogle ScholarPubMed
Tsai, M.-D., Drakenberg, T., Thulin, E. & Forsén, S. 1987 Is the binding of magnesium (II) to calmodulin significant? An investigation by magnesium-25 nuclear magnetic resonance. Biochemistry 26 36353643CrossRefGoogle ScholarPubMed
Van Kemenade, M. J. J. M. & de Bruyn, P. L. 1989 The influence of casein on the precipitation of brushite and octacalcium phosphate. Colloids and Surfaces 36 359368Google Scholar
Vogel, H. J. & Forsén, S. 1986 NMR studies of calcium-binding proteins. Biological Magnetic Resonance 7 249309Google Scholar
Vreeman, H. J., Visser, S., Slangen, C. J. & Van Riel, J. A. M. 1986 Characterization of bovine κ-casein fraction and the kinetics of chymosin-induced macropeptide release from carbohydrate-free and carbohydrate-containing fractions determined by high-performance gel-permeation chromatography. Biochemical Journal 240 8797CrossRefGoogle ScholarPubMed
Wahlgren, N. M., Dejmek, P. & Drakenberg, T. 1990 A 43Ca and 31P NMR study of the calcium and phosphate equilibria in heated milk solutions. Journal of Dairy Research 57 355364Google Scholar
Wahlgren, M., Drakenberg, T., Vogel, H. J. & Dejmek, P. 1986 31P-nuclear magnetic resonance study of milk fractions. Journal of Dairy Research 53 539545CrossRefGoogle Scholar
Walstra, P. & Jenness, R. 1984 Dairy Chemistry and Physics. New York: J. Wiley & SonsGoogle Scholar