Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-26T22:50:10.609Z Has data issue: false hasContentIssue false

Effects of restriction of amino acid supply to the isolated perfused guinea-pig mammary gland

Published online by Cambridge University Press:  01 June 2009

T. Ben Mepham
Affiliation:
University of Nottingham, Department of Physiology and Environmental Studies, Faculty of Agricultural Science, Sutton Bonington, Loughboroug, LE12 5ED
Andrew R. Peters
Affiliation:
University of Nottingham, Department of Physiology and Environmental Studies, Faculty of Agricultural Science, Sutton Bonington, Loughboroug, LE12 5ED
Stephen Alexandrov
Affiliation:
University of Nottingham, Department of Physiology and Environmental Studies, Faculty of Agricultural Science, Sutton Bonington, Loughboroug, LE12 5ED

Summary

When individual essential amino acids were omitted for periods of 40–100 min from the infusate substrate solution in isolated perfused guinea-pig mammary gland experiments, uptake of methionine, tyrosine, phenylalanine, histidine and tryptophan (group 1) was significantly depressed by a mean of 49·8%, whereas the remaining essential amino acids (group 2) showed no significant decrease in uptake. During depletion periods oxidation of [14C\amino acids was increased. The possible significance of the differences in absorption between the 2 groups of amino acids is discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrov, S., Peters, A. R. & Mepham, T. B. (1977). Zhivotnovudni Nauki 14, 115.Google Scholar
Davis, S. R. & Mepham, T. B. (1974). Quarterly Journal of Experimental Physiology 59, 113.CrossRefGoogle Scholar
Davis, S. R. & Mepham, T. B. (1976). Biochemical Journal 156, 553.CrossRefGoogle Scholar
Denckla, W. D. & Dewey, H. K. (1967). Journal of Laboratory and Clinical Medicine 69, 160.Google Scholar
Derrig, R. G., Davis, C. L. & Clark, J. H. (1973). Journal of Dairy Science 56, 651.Google Scholar
Lehmann, J. (1971). Scandinavian Journal of Clinical and Laboratory Investigation 28, 49.CrossRefGoogle Scholar
Mepham, T. B. (1971). In Lactation, p. 297. (Ed. Falconer, I. R..) London: Butterworths.Google Scholar
Mepham, T. B., Davis, S. R. & Humphreys, J. R. (1976a). Journal of Dairy Research 43, 197.CrossRefGoogle Scholar
Mepham, T. B., Peters, A. R. & Davis, S. R. (1976b). Biochemical Journal 158, 659.CrossRefGoogle Scholar
Peters, A. R. (1977). Thesis, University of Nottingham.Google Scholar
Peters, A. R., Alexandrov, S. & Mepham, T. B. (1979). Journal of Dairy Research 46, 59.CrossRefGoogle Scholar
Verbeke, R., Roets, E., Massart-Leën, A. -M. & Peeters, G. (1972). Journal of Dairy Research 39, 239.CrossRefGoogle Scholar
Verbeke, R., Simeonov, S. & Peeters, G. (1967). Archives Internationales de Physiologie et de Biochimie 75, 378.Google Scholar
Wohlt, J. E., Clark, J. H., Derrig, R. G. & Davis, C. L. (1977). Journal of Dairy Science 60,1875.CrossRefGoogle Scholar