Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T08:31:24.959Z Has data issue: false hasContentIssue false

The unexpected recovery of hybrids in a Drosophila species cross: a genetic analysis

Published online by Cambridge University Press:  14 April 2009

H. Allen Orr
Affiliation:
Department of Biology, University of Rochester, Rochester, NY 14627
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The species cross between Drosophila melanogaster and D. simulans was first described by Sturtevant in the 1920s. According to his description, the hybridization of D. simulans females and D. melanogaster males produces only (or almost only) male progeny. Female hybrids are embryonic lethal. Here it is shown that these traditional results no longer hold. Instead, D. simulans is polymorphic for factor(s) that qualitatively affect the outcome of species crosses to D. melanogaster. Remarkably, many, if not most, strains of D. simulans produce abundant female hybrids when crossed to D. melanogaster males. Genetic analysis of the difference between D. simulans strains that produce many versus few hybrid females shows that recovery of hybrid females depends on autosomal, maternally acting gene(s).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Ashburner, M., (1989). Drosophila: a Laboratory Handbook. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Coyne, J. A., (1984). Genetic basis of male sterility in hybrids between two closely related species of Drosophila. Proceedings of the National Academy of Sciences, U.S.A. 81, 44444447.CrossRefGoogle ScholarPubMed
Hadorn, E., (1961). Zur Autonomie und Phasenspezifität derf Ledtalität von Bastarden zwischen Drosophila melanogaster und Drosophila simulans. Revue Suisse de Zoologie 68, 197207.CrossRefGoogle Scholar
Hoffmann, A. A., Turelli, M., & Simmons, G. M., (1986). Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40, 692701.CrossRefGoogle ScholarPubMed
Hutter, P., & Ashburner, M., (1987). Genetic rescue of inviable hybrids between Drosophila melanogaster and its sibling species. Nature 327, 331333.CrossRefGoogle ScholarPubMed
Hutter, P., Roote, J., & Ashburner, M., (1990). A genetic basis for the inviability of hybrids between sibling species of Drosophila. Genetics 124, 909920.CrossRefGoogle ScholarPubMed
Lachaise, D., David, J. R., Lemeunier, F., Tsacas, L., & Ashburner, M., (1986). The reproductive relationships of Drosophila sechellia with D. mauritiana D. simulans, and D. melanogaster from the Afrotropical region. Evolution 40, 262271.Google Scholar
Lee, W. H., (1978). Temperature sensitive viability of hybrids between Drosophila melanogaster and D. simulans. Japanese Journal of Genetics 53, 339344.Google Scholar
Lindsley, D. L., & Zimm, G. G., (1992). The Genome of Drosophila melanogaster. San Diego: Academic Press.Google Scholar
Muller, H. J., & Pontecorvo, G., (1940). Recombinants between Drosophila species, the F1 hybrids of which are sterile. Nature 146, 199.CrossRefGoogle Scholar
O'Neill, S. L., Giordano, R., Colbert, A. M. E., Karr, T. L., & Robertson, H. M., (1992). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proceedings of the National Academy of Sciences, U.S.A. 89, 26992702.Google Scholar
Orr, H. A., (1991). Genetic basis of postzygotic isolation between D. melanogaster and D. simulans. Drosophila Information Service 70, 161162.Google Scholar
Orr, H. A., (1993). Haldane's rule has multiple genetic causes. Nature 361, 532533.CrossRefGoogle ScholarPubMed
Pontecorvo, G., (1943). Viability interactions between chromosomes of Drosophila melanogaster and Drosophila simulans. Journal of Genetics 45, 5166.Google Scholar
Sawamura, K., Taira, T., & Watanabe, T. K. (1993 a). Hybrid lethal systems in the Drosophila melanogaster species complex. I. The maternal hybrid rescue (mhr) gene of Drosophila simulans. Genetics 133, 299305.Google Scholar
Sawamura, K., Watanabe, T. K., & Yamamoto, M.-T. (1993 b). Hybrid lethal systems in the Drosophila melanogaster species complex. Genetica 88, 175185.CrossRefGoogle ScholarPubMed
Sturtevant, A. H., (1920). Genetic studies on Drosophila simulans. I. Introduction. Hybrids with Drosophila melanogaster. Genetics 5, 488500.CrossRefGoogle ScholarPubMed
Sturtevant, A. H., (1929). The genetics of Drosophila simulans. Carnegie Institute of Washington Publication 399, 162.Google Scholar
Watanabe, T. K., (1979). A gene that rescues the lethal hybrids between Drosophila melanogaster and D. simulans. Japanese Journal of Genetics 54, 325331.Google Scholar