Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-08T16:01:53.528Z Has data issue: false hasContentIssue false

Anaemia and iron deficiency associate with polymorphism TMPRSS6 rs855791 in Brazilian children attending day care centres

Published online by Cambridge University Press:  22 August 2023

Natalia Menezes Silva
Affiliation:
Graduate Program in Health Sciences, School of Medicine, Federal University of Goiás, Goiânia, GO, Brazil
Mirella de Paiva Lopes
Affiliation:
Graduate Program in Nutrition and Health, School of Nutrition, Federal University of Goiás, Goiânia, GO 74605-080, Brazil
Raquel Machado Schincaglia
Affiliation:
School of Nutrition, Federal University of Goiás, Goiânia, GO, Brazil
Alexandre Siqueira Guedes Coelho
Affiliation:
School of Agronomy, Federal University of Goiás, Goiânia, GO, Brazil
Cristiane Cominetti
Affiliation:
Nutritional Genomics Research Group, Nutrition and Health Graduation Program, School of Nutrition, Federal University of Goiás, Goiânia, GO, Brazil
Maria Claret Costa Monteiro Hadler*
Affiliation:
Graduate Program in Health Sciences, School of Medicine, Federal University of Goiás, Goiânia, GO, Brazil Graduate Program in Nutrition and Health, School of Nutrition, Federal University of Goiás, Goiânia, GO 74605-080, Brazil
*
*Corresponding author: Maria Claret Costa Monteiro Hadler, email clarethadler@ufg.br

Abstract

Fe-deficiency anaemia is a major public health concern in children under 5 years of age. TMPRSS6 gene, encoding matriptase-2 protein, is implicated in Fe homoeostasis and has been associated with anaemia and Fe status in various populations. The aim of this cross-sectional study was to investigate the associations between the single nucleotide polymorphism (SNP) TMPRSS6 rs855791 and biomarkers of anaemia and Fe deficiency in Brazilian children attending day care centres. A total of 163 children aged 6–42 months were evaluated. Socio-economic, demographic, biochemical, haematological, immunological and genotype data were collected. Multiple logistic and linear regressions with hierarchical selection were used to assess the effects of independent variables on categorised outcomes and blood marker concentrations. Minor allele (T) frequency of rs855791 was 0·399. Each copy of the T allele was associated with a 4·49-fold increased risk of developing anaemia (P = 0·005) and a 4·23-fold increased risk of Fe deficiency assessed by serum soluble transferrin receptor (sTfR) (P < 0·001). The dose of the T allele was associated with an increase of 0·18 mg/l in sTfR concentrations and reductions of 1·41 fl and 0·52 pg in mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH), respectively. In conclusion, the T allele of SNP TMPRSS6 rs855791 was significantly associated with anaemia and Fe deficiency assessed by sTfR in Brazilian children attending day care centres. The effect was dose dependent, with each copy of the T allele being associated with lower MCV and MCH and higher concentrations of sTfR.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Coordinator of FORNUTRI Working Group.

References

World Health Organization (2001) Iron Deficiency Anemia. Assessment, Prevention, and Control. A Guide for Programme Managers. Geneva: WHO. pp. 4765.Google Scholar
World Health Organization (2017) Nutritional Anaemias: Tools for Effective Prevention and Control. Geneva: WHO.Google Scholar
Universidade Federal do Rio de Janeiro (2020) Estudo Nacional de Alimentação e Nutrição Infantil – ENANI-2019: Resultados preliminares – Prevalência de anemia e deficiência de vitamina A entre crianças brasileiras de 6 a 59 meses (National Child Food and Nutrition Study – ENANI-2019: Preliminary results – Prevalence of anemia and vitamin A deficiency among Brazilian children aged 6 to 59 months). Rio de Janeiro: UFRJ. https://enani.nutricao.ufrj.br/index.php/relatorios/ (accessed January 2023).Google Scholar
Kassebaum, NJ & GBD 2013 Anemia Collaborators (2016) The global burden of anemia. Hematol Oncol Clin North Am 30, 247308.CrossRefGoogle ScholarPubMed
Camaschella, C, Nai, A & Silvestri, L (2020) Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 105, 260272.Google Scholar
Ginzburg, YZ (2019) Hepcidin-ferroportin axis in health and disease. Vitam Horm 110, 1745.Google Scholar
Muckenthaler, MU, Rivella, S, Hentze, MW, et al. (2017) A red carpet for iron metabolism. Cell 168, 344361.Google Scholar
Nemeth, E, Tuttle, MS, Powelson, J, et al. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, Suppl. 5704, 20902093.CrossRefGoogle ScholarPubMed
Du, X, She, E, Gelbart, T, et al. (2008) The serine protease TMPRSS6 is required to sense iron deficiency. Science 320, Suppl. 5879, 10881092.CrossRefGoogle ScholarPubMed
Tanaka, T, Roy, CN & Yao, W (2010) A genome-wide association analysis of serum iron concentrations. Blood 115, 9496.Google Scholar
Benyamin, B, Ferreira, MA, Willemsen, G, et al. (2009) Common variants in TMPRSS6 are associated with iron status and erythrocyte volume. Nat Genet 41, 11731175.CrossRefGoogle ScholarPubMed
Chambers, JC, Zhang, W, Li, Y, et al. (2009) Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat Genet 41, 11701172.Google Scholar
Silvestri, L, Pagani, A, Nai, A, et al. (2008) The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab 8, 502511.Google Scholar
Nai, A, Pagani, A, Silvestri, L, et al. (2011) TMPRSS6 rs855791 modulates hepcidin transcription in vitro and serum hepcidin levels in normal individuals. Blood 118, 44594462.CrossRefGoogle ScholarPubMed
Traglia, M, Girelli, D, Biino, G, et al. (2011) Association of HFE and TMPRSS6 genetic variants with iron and erythrocyte parameters is only in part dependent on serum hepcidin concentrations. J Med Genet 48, 629634.CrossRefGoogle ScholarPubMed
Soranzo, N, Sanna, S, Wheeler, E, et al. (2010) Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways. Diabetes 59, 32293239.CrossRefGoogle ScholarPubMed
Oexle, K, Ried, JS, Hicks, AA, et al. (2011) Novel association to the proprotein convertase PCSK7 gene locus revealed by analysing soluble transferrin receptor (sTfR) levels. Hum Mol Genet 20, 10421047.CrossRefGoogle Scholar
Machado, MM, Lopes, MD, Schincaglia, RM, et al. (2021) Effect of fortification with Multiple Micronutrient Powder on the prevention and treatment of iron deficiency and anaemia in Brazilian children: a randomized clinical trial. Nutrients 13, 2160.Google Scholar
Lohman, TG, Roche, AF & Martorell, R (1988) Anthropometric Standardization Reference Manual. Chicago: Human Kinetics Books.Google Scholar
Monego, ET, Vieira, EC, Menezes, IHFC, et al. (2011) Centro Colaborador em Alimentação e Nutrição (CECAN) da Região Centro-Oeste – Ministério da saúde. Antropometria: manual de técnicas e procedimentos (Anthropometry: Manual of Techniques and Procedures), 4th ed. Goiânia: CECAN.Google Scholar
Cruz, AT, Souza, JM & Philippi, ST (2003) Avaliação da concordância dos métodos de pesagem direta de alimentos em creches – São Paulo – Brasil (Evaluation of the concordance of methods of direct weighing of food in day care centers – São Paulo – Brazil). Rev Bras Epidemiol 6, 220226.CrossRefGoogle Scholar
Zabotto, CB, Viana, RP & Gil, MD (1996) Registro fotográfico para inquéritos dietéticos: Utensilios e porçöes (Photographic Record for Dietary Surveys: Utensils and Portions). Campinas, Goiânia: UNICAMP, UFG.Google Scholar
Giuntini, EB (2005) Tabela Brasileira de Composição de Alimentos (Brazilian Food Composition Table). São Paulo: TBCA-USP: 2001–2004.Google Scholar
Brasil. IBGE (2011) Pesquisa de Orçamentos Familiares 2008–2009: análise do consumo alimentar pessoal no Brasil (Household Budget Survey 2008–2009: Analysis of Personal Food Consumption in Brazil). Rio de Janeiro: IBGE.Google Scholar
Philippi, ST (2013) Tabela de composição de alimentos: Suporte para decisão nutricional (Food Composition Table: Support for Nutritional Decision). Barueri, SP: Editora Manole.Google Scholar
National Research Council (U.S.) & Subcommittee on the Tenth Edition of the RDAs (1989) Recommended Dietary Allowances, 9th ed. Washington, DC: National Academy Press.Google Scholar
Hadler, MC, Juliano, Y & Sigulem, DM (2002) Anemia in infancy: etiology and prevalence. J Pediatr (Rio J) 78, 321326.Google Scholar
Oski, FA (1993) Iron deficiency in infancy and childhood. N Engl J Med 329, 9093.Google Scholar
Walters, MC & Abelson, HT (1996) Interpretation of the complete blood count. Pediatr Clin North Am 43, 599622.CrossRefGoogle ScholarPubMed
Lundeen, EA, Lind, JN, Clarke, KE, et al. (2019) Four years after implementation of a national micronutrient powder program in Kyrgyzstan, prevalence of iron deficiency and iron deficiency anemia is lower, but prevalence of vitamin A deficiency is higher. Eur J Clin Nutr 73, 416423.Google Scholar
World Health Organization (2020) WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Populations. Geneva: World Health Organization.Google Scholar
Cardoso, MA, Augusto, RA, Bortolini, GA, et al. (2016) Effect of providing multiple micronutrients in powder through primary healthcare on anemia in young Brazilian children: a multicentre pragmatic controlled trial. PLoS One 11, e0151097.CrossRefGoogle ScholarPubMed
R Core Team (2022) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/ Google Scholar
Urbaszek, K, Drabińska, N, Szaflarska-Popławska, A, et al. (2021) TMPRSS6 rs855791 polymorphism status in children with celiac disease and anemia. Nutrients 13, 2782.Google Scholar
Wanjiku, WNG, Towers, GW, Swinkels, DW, et al. (2015) Inter-ethnic differences in genetic variants within the transmembrane protease, serine 6 (TMPRSS6) gene associated with iron status indicators: a systematic review with meta-analyses. Genes Nutr 10, 15.Google Scholar
Gichohi-Wainaina, WN, Melse-Boonstra, A, Swinkels, DW, et al. (2015) Common variants and haplotypes in the TF, TNF-α, and TMPRSS6 genes are associated with iron status in a female black South African population. J Nutr 145, 945953.Google Scholar
Read, RW, Schlauch, KA, Elhanan, G, et al. (2019) GWAS and PheWAS of red blood cell components in a Northern Nevadan cohort. PloS One 14, e0218078.Google Scholar
Batar, B, Bavunoglu, I, Hacioglu, Y, et al. (2018) The role of TMPRSS6 gene variants in iron-related hematological parameters in Turkish patients with iron deficiency anemia. Gene 673, 201205.Google Scholar
Shinta, D, Adhiyanto, C, Htet, MK, et al. (2019) The association of TMPRSS6 gene polymorphism and iron intake with iron status among under-two-year-old children in Lombok, Indonesia. Nutrients 11, 878.Google Scholar
Wang, CY & Babitt, JL (2019) Liver iron sensing and body iron homeostasis. Blood 133, 1829.Google Scholar
Cappellini, MD, Russo, R, Andolfo, I, et al. (2020) Inherited microcytic anemias. Hematol Am Soc Hematol Educ Program 2020, 465470.Google Scholar
Dallman, PR & Reeves, JD (1984) Laboratory diagnosis of iron deficiency. In Iron Nutrition in Infancy and Childhood, pp. 1144 [Stekel, A, editor]. New York: Raven Press.Google Scholar
Buttarello, M (2016) Laboratory diagnosis of anemia: are the old and new red cell parameters useful in classification and treatment, how? Int J Lab Hematol 38, 123132.Google Scholar
Engle-Stone, R, Aaron, GJ, Huang, J, et al. (2017) Predictors of anemia in preschool children: biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Am J Clin Nutr 106, S402S415.Google Scholar
André, HP, Sperandio, N, Siqueira, RL, et al. (2018) Indicadores de insegurança alimentar e nutricional associados à anemia ferropriva em crianças brasileiras: uma revisão sistemática (Indicators of food and nutrition insecurity associated with iron deficiency anemia in Brazilian children: a systematic review). Cien Saude Colet 23, 11591167.Google Scholar
Zuffo, CR, Osório, MM, Taconeli, CA, et al. (2016) Prevalence and risk factors of anemia in children. J Pediatr (Rio J) 92, 353360.Google Scholar
Lambrecht, NJ, Bridges, D, Wilson, ML, et al. (2022) Associations of bacterial enteropathogens with systemic inflammation, iron deficiency, and anemia in preschool-age children in southern Ghana. PloS One 17, e0271099.CrossRefGoogle ScholarPubMed
Pedraza, DF, Queiroz, DD, Sales, MC (2014) Doenças infecciosas em crianças pré-escolares brasileiras assistidas em creches (Infectious diseases in Brazilian preschool children assisted in day care centers). Cien Saude Colet 19, 511528.Google Scholar
Prentice, AM, Bah, A, Jallow, MW, et al. (2019) Respiratory infections drive hepcidin-mediated blockade of iron absorption leading to iron deficiency anemia in African children. Sci Adv 5, eaav9020.Google Scholar