Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T06:26:26.549Z Has data issue: false hasContentIssue false

Ultra-processed food consumption and dental caries in children and adolescents: a systematic review and meta-analysis

Published online by Cambridge University Press:  27 July 2022

Andreia Morales Cascaes*
Affiliation:
Federal University of Santa Catarina, Department of Public Health, Graduate Program in Public Health, Graduate Program in Dentistry, Florianópolis, SC, Brazil
Nathalia Ribeiro Jorge da Silva
Affiliation:
Federal University of Pelotas, Faculty of Dentistry, Graduate Program in Dentistry, Pelotas, RS, Brazil
Matheus dos Santos Fernandez
Affiliation:
Federal University of Pelotas, Faculty of Dentistry, Pelotas, RS, Brazil
Rafael Aiello Bomfim
Affiliation:
Federal University of Mato Grosso do Sul, School of Dentistry, Graduate Program in Dentistry, Campo Grande, MS, Brazil
Juliana dos Santos Vaz
Affiliation:
Federal University of Pelotas, Faculty of Nutrition, Graduate Program in Nutrition and Foods, Pelotas, RS, Brazil
*
*Corresponding author: Dr A. M. Cascaes, email andreia.cascaes@ufsc.br

Abstract

This study summarised the association between ultra-processed food (UPF) consumption and dental caries in children and adolescents through a systematic review and meta-analysis. The search of PubMed, Cochrane, Web of Science and Scopus databases using the ‘PECOS’ strategy retrieved 1462 eligible articles. Only studies with humans aged ≤ 19 years; that assessed groups of any UPF or specific UPF items; that measured dental caries as the decayed, filled and missing surfaces or teeth indexes, based on the WHO criteria; cross-sectional, case–control, cohort and all types of interventions that examined the adjusted association between UPF consumption and dental caries were included. All studies received qualitative evaluation. Meta-analysis using random-effects models combined multivariable-adjusted OR for case–control and cross-sectional studies and risk ratio (RR) for longitudinal studies of the highest v. lowest category of UPF consumption. Forty-two studies were included in the qualitative synthesis and twenty-seven in the meta-analysis. The pooled RR was 1·71 (95 % CI 1·31, 2·24), and the pooled OR was 1·55 (95 % CI 1·37, 1·75). The highest OR was found among participants who had dental caries prevalence >70 % (OR = 3·67, 95 % CI 2·16, 6·23). Better evidence quality was found among cohort studies that evaluated children <6 years old. The findings suggest that higher UPF consumption is associated with greater dental caries in children and adolescents. Public health efforts to reduce UPF consumption are needed to improve the oral health of children and adolescents.

Type
Systematic Review and Meta-Analysis
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moodie, R, Stuckler, D, Monteiro, C, et al. (2013) Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet 381, 670679.CrossRefGoogle ScholarPubMed
Costa, CS, Del-Ponte, B, Assuncao, MCF, et al. (2018) Consumption of ultra-processed foods and body fat during childhood and adolescence: a systematic review. Public Health Nutr 21, 148159.CrossRefGoogle ScholarPubMed
Chen, X, Zhang, Z, Yang, H, et al. (2020) Consumption of ultra-processed foods and health outcomes: a systematic review of epidemiological studies. Nutr J 19, 86.CrossRefGoogle ScholarPubMed
Pagliai, G, Dinu, M, Madarena, MP, et al. (2021) Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr 125, 308318.CrossRefGoogle ScholarPubMed
Elizabeth, L, Machado, P, Zinocker, M, et al. (2020) Ultra-processed foods and health outcomes: a narrative review. Nutrients 12, 1955.CrossRefGoogle ScholarPubMed
Touger-Decker, R & van Loveren, C (2003) Sugars and dental caries. Am J Clin Nutr 78, 881S892S.CrossRefGoogle ScholarPubMed
Sheiham, A & James, WP (2014) A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption. Public Health Nutr 17, 21762184.CrossRefGoogle ScholarPubMed
Gupta, P, Gupta, N, Pawar, AP, et al. (2013) Role of sugar and sugar substitutes in dental caries: a review. ISRN Dent 2013, 519421.Google ScholarPubMed
Bradshaw, DJ & Lynch, RJ (2013) Diet and the microbial aetiology of dental caries: new paradigms. Int Dent J 63, Suppl. 2, 6472.CrossRefGoogle ScholarPubMed
Hancock, S, Zinn, C & Schofield, G (2020) The consumption of processed sugar- and starch-containing foods, and dental caries: a systematic review. Eur J Oral Sci 128, 467475.CrossRefGoogle ScholarPubMed
Lingstrom, P, van Houte, J & Kashket, S (2000) Food starches and dental caries. Crit Rev Oral Biol Med 11, 366380.CrossRefGoogle ScholarPubMed
GBD 2017 Oral Disorders Collaborators, Bernabe, E, Marcenes, W, et al. (2020) Global, regional, and national levels and trends in burden of oral conditions from 1990 to 2017: a systematic analysis for the global burden of disease 2017 study. J Dent Res 99, 362373.Google ScholarPubMed
Marcenes, W, Kassebaum, NJ, Bernabe, E, et al. (2013) Global burden of oral conditions in 1990–2010: a systematic analysis. J Dent Res 92, 592597.CrossRefGoogle ScholarPubMed
Listl, S, Galloway, J, Mossey, PA, et al. (2015) Global economic impact of dental diseases. J Dent Res 94, 13551361.CrossRefGoogle ScholarPubMed
Haag, DG, Peres, KG, Balasubramanian, M, et al. (2017) Oral conditions and health-related quality of life: a systematic review. J Dent Res 96, 864874.CrossRefGoogle ScholarPubMed
Hayden, C, Bowler, JO, Chambers, S, et al. (2013) Obesity and dental caries in children: a systematic review and meta-analysis. Community Dent Oral Epidemiol 41, 289308.CrossRefGoogle ScholarPubMed
Breda, J, Jewell, J & Keller, A (2018) The importance of the World Health Organization sugar guidelines for dental health and obesity prevention. Caries Res 53, 149152.CrossRefGoogle ScholarPubMed
Lioret, S, Campbell, KJ, McNaughton, SA, et al. (2020) Lifestyle patterns begin in early childhood, persist and are socioeconomically patterned, confirming the importance of early life interventions. Nutrients 12, 724.CrossRefGoogle ScholarPubMed
Page, MJ, McKenzie, JE, Bossuyt, PM, et al. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18, e1003583.CrossRefGoogle ScholarPubMed
Monteiro, CA, Cannon, G, Levy, RB, et al. (2016) NOVA. The star shines bright. World Nutr 7, 2838.Google Scholar
WHO (2013) Oral Health Surveys: Basic Methods, 5th ed. Geneva: World Health Organization.Google Scholar
The Joanna Briggs Institute (2021) Joanna Briggs Institute Reviewers’ Manual: 2015 Edition. Adelaide: Joanna Briggs Institute.Google Scholar
Higgins, JP, Thompson, SG, Deeks, JJ, et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557560.CrossRefGoogle ScholarPubMed
Higgins, JPT & Green, S (2011) Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. Oxford: The Cochrane Collaboration.Google Scholar
Ioannidis, JP & Trikalinos, TA (2007) The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ 176, 10911096.CrossRefGoogle ScholarPubMed
Alhabdan, YA, Albeshr, AG, Yenugadhati, N, et al. (2018) Prevalence of dental caries and associated factors among primary school children: a population-based cross-sectional study in Riyadh, Saudi Arabia. Environ Health Prev Med 23, 60.CrossRefGoogle ScholarPubMed
Almasi, A, Rahimiforoushani, A, Eshraghian, MR, et al. (2016) Effect of nutritional habits on dental caries in permanent dentition among schoolchildren aged 10–12 years: a zero-in-flated generalized Poisson regression model approach. Iran J Public Health 45, 353361.Google Scholar
Arheiam, AA, Harris, RV & Baker, SR (2020) Changes in dental caries and sugar intake before and during the conflict in Libya: a natural experiment. Community Dent Oral Epidemiol 48, 201207.CrossRefGoogle ScholarPubMed
Arora, A, Manohar, N & John, JR (2017) Factors associated with dental caries in primary dentition in a non-fluoridated rural community of New South Wales, Australia. Int J Environ Res Public Health 14, 1444.CrossRefGoogle Scholar
Campain, AC, Morgan, MV, Evans, RW, et al. (2003) Sugar-starch combinations in food and the relationship to dental caries in low-risk adolescents. Eur J Oral Sci 111, 316325.CrossRefGoogle ScholarPubMed
Campus, G, Cagetti, MG, Senna, A, et al. (2008) Caries prevalence and need for dental care in 13–18-year-olds in the Municipality of Milan, Italy. Community Dental Health 25, 237242.Google ScholarPubMed
Chen, KJ, Gao, SS, Duangthip, D, et al. (2017) Dental caries status and its associated factors among 5-year-old Hong Kong children: a cross-sectional study. BMC Oral Health 17, 121.CrossRefGoogle ScholarPubMed
da Silveira, KSR, Prado, IM, Abreu, LG, et al. (2018) Association among chronotype, dietary behaviours, and caries experience in Brazilian adolescents: is there a behavioural pattern? Int J Paediatr Dent 28, 608615.CrossRefGoogle Scholar
David, J, Wang, NJ, Astrøm, AN, et al. (2005) Dental caries and associated factors in 12-year-old schoolchildren in Thiruvananthapuram, Kerala, India. Int J Paediatr Dent 15, 420428.CrossRefGoogle ScholarPubMed
de Souza, MS, Vaz, JDS, Martins-Silva, T, et al. (2021) Ultra-processed foods and early childhood caries in 0–3-year-olds enrolled at primary healthcare centers in Southern Brazil. Public Health Nutr 24, 33223330.CrossRefGoogle ScholarPubMed
Gao, J, Ruan, J, Zhao, L, et al. (2014) Oral health status and oral health knowledge, attitudes and behavior among rural children in Shaanxi, western China: a cross-sectional survey. BMC Oral Health 14, 144.CrossRefGoogle ScholarPubMed
Gao, SS, Duangthip, D, Lo, ECM, et al. (2018) Risk factors of early childhood caries among young children in Hong Kong: a cross-sectional study. J Clin Pediatr Dent 42, 367372.CrossRefGoogle Scholar
Garcia-Closas, R, Garcia-Closas, M & Serra-Majem, L (1997) A cross-sectional study of dental caries, intake of confectionery and foods rich in starch and sugars, and salivary counts of Streptococcus mutans in children in Spain. Am J Clin Nutr 66, 12571263.CrossRefGoogle Scholar
Garcia-Pola, M, Gonzalez-Diaz, A & Garcia-Martin, JM (2021) Effect of a preventive oral health program starting during pregnancy: a case-control study comparing immigrant and native women and their children. Int J Environ Res Public Health 18, 4096.CrossRefGoogle ScholarPubMed
Ghazal, T, Levy, SM, Childers, NK, et al. (2015) Factors associated with early childhood caries incidence among high caries-risk children. Community Dent Oral Epidemiol 43, 366374.CrossRefGoogle ScholarPubMed
Han, DH, Kim, DH, Kim, MJ, et al. (2014) Regular dental checkup and snack-soda drink consumption of preschool children are associated with early childhood caries in Korean caregiver/preschool children dyads. Community Dent Oral Epidemiol 42, 7078.CrossRefGoogle ScholarPubMed
Hasheminejad, N, Mohammadi, TM, Mahmoodi, MR, et al. (2020) The association between beverage consumption pattern and dental problems in Iranian adolescents: a cross sectional study. BMC Oral Health 20, 74.CrossRefGoogle ScholarPubMed
Hashim, R, Williams, SM & Thomson, WM (2009) Diet and caries experience among preschool children in Ajman, United Arab Emirates. Eur J Oral Sci 117, 734740.CrossRefGoogle ScholarPubMed
Hu, JH, Jiang, W, Lin, XL, et al. (2018) Dental caries status and caries risk factors in students ages 12–14 years in Zhejiang, China. Med Sci Monit 24, 36703678.CrossRefGoogle ScholarPubMed
Huew, R, Waterhouse, P, Moynihan, P, et al. (2012) Dental caries and its association with diet and dental erosion in Libyan schoolchildren. Int J Paediatr Dent 22, 6876.CrossRefGoogle ScholarPubMed
Jain, R, Patil, S, Shivakumar, KM, et al. (2018) Sociodemographic and behavioral factors associated with early childhood caries among preschool children of Western Maharashtra. Indian J Dent Res 29, 568574.Google ScholarPubMed
Jamieson, LM, Do, LG, Bailie, RS, et al. (2013) Associations between area-level disadvantage and DMFT among a birth cohort of Indigenous Australians. Aust Dent J 58, 7581.CrossRefGoogle ScholarPubMed
Kierce, EA, Boyd, LD, Rainchuso, L, et al. (2016) Association between early childhood caries, feeding practices and an established dental home. J Dent Hyg 90, 1827.Google Scholar
Kumar, S, Tadakamadla, J, Duraiswamy, P, et al. (2016) Dental caries and its socio-behavioral predictors-an exploratory cross-sectional study. J Clin Pediatr Dent 40, 186192.CrossRefGoogle Scholar
Laniado, N, Sanders, AE, Godfrey, EM, et al. (2020) Sugar-sweetened beverage consumption and caries experience: an examination of children and adults in the United States, national health and nutrition examination survey 2011–2014. J Am Dent Assoc 151, 782789.CrossRefGoogle ScholarPubMed
Lin, YC, Wang, WC, Chen, JH, et al. (2017) Significant caries and the interactive effects of maternal-related oral hygiene factors in urban preschool children. J Public Health Dent 77, 188196.CrossRefGoogle ScholarPubMed
Markovic, D, Ristic-Medic, D, Vucic, V, et al. (2015) Association between being overweight and oral health in Serbian schoolchildren. Int J Paediatr Dent 25, 409417.CrossRefGoogle Scholar
Mattila, ML, Rautava, P, Paunio, P, et al. (2001) Caries experience and caries increments at 10 years of age. Caries Res 35, 435441.CrossRefGoogle ScholarPubMed
Mei, L, Shi, H, Wei, Z, et al. (2021) Risk factors associated with early childhood caries among Wenzhou preschool children in China: a prospective, observational cohort study. BMJ Open 11, e046816.CrossRefGoogle ScholarPubMed
Morikava, FS, Fraiz, FC, Gil, GS, et al. (2018) Healthy and cariogenic foods consumption and dental caries: a preschool-based cross-sectional study. Oral Dis 24, 13101317.CrossRefGoogle ScholarPubMed
Myint, ZCK, Zaitsu, T, Oshiro, A, et al. (2019) Risk indicators of dental caries and gingivitis among 10–11-year-old students in Yangon, Myanmar. Int Dental J 70, 167175.CrossRefGoogle Scholar
Nirunsittirat, A, Pitiphat, W, McKinney, CM, et al. (2016) Breastfeeding duration and childhood caries: a cohort study. Caries Res 50, 498507.CrossRefGoogle ScholarPubMed
Olczak-Kowalczyk, D, Gozdowski, D & Kaczmarek, U (2020) Factors associated with early childhood caries in polish 3-year-old children. Oral Health Prev Dent 18, 833842.Google Scholar
Peltzer, K, Mongkolchati, A, Satchaiyan, G, et al. (2014) Sociobehavioral factors associated with caries increment: a longitudinal study from 24 to 36 months old children in Thailand. Int J Environ Res Public Health 11, 1083810850.CrossRefGoogle ScholarPubMed
Peres, MA, de Oliveira Latorre Mdo, R, Sheiham, A, et al. (2005) Social and biological early life influences on severity of dental caries in children aged 6 years. Community Dent Oral Epidemiol 33, 5363.CrossRefGoogle ScholarPubMed
Serra Majem, L, García Closas, R, Ramón, JM, et al. (1993) Dietary habits and dental caries in a population of Spanish schoolchildren with low levels of caries experience. Caries Res 27, 488494.CrossRefGoogle Scholar
Simangwa, LD, Astrom, AN, Johansson, A, et al. (2019) Oral diseases and oral health related behaviors in adolescents living in Maasai population areas of Tanzania: a cross-sectional study. BMC Pediatr 19, 275.CrossRefGoogle ScholarPubMed
Su, H, Yang, R, Deng, Q, et al. (2018) Deciduous dental caries status and associated risk factors among preschool children in Xuhui District of Shanghai, China. BMC Oral Health 18, 111.CrossRefGoogle ScholarPubMed
Tsang, C, Sokal-Gutierrez, K, Patel, P, et al. (2019) Early childhood oral health and nutrition in urban and rural Nepal. Int J Environ Res Public Health 16, 2456.CrossRefGoogle Scholar
Vanobbergen, J, Martens, L, Lesaffre, E, et al. (2001) Assessing risk indicators for dental caries in the primary dentition. Community Dent Oral Epidemiol 29, 424434.CrossRefGoogle ScholarPubMed
Varenne, B, Petersen, PE & Ouattara, S (2006) Oral health behaviour of children and adults in urban and rural areas of Burkina Faso, Africa. Int Dent J 56, 6170.CrossRefGoogle Scholar
Villalobos-Rodelo, JJ, Medina-Solís, CE, Maupomé, G, et al. (2007) Dental caries in schoolchildren from a northwestern community of Mexico with mixed dentition, and some associated clinical, socioeconomic and socio-demographic variables. Rev Invest Clin 59, 256267.Google ScholarPubMed
Moubarac, JC, Parra, DC, Cannon, G, et al. (2014) Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment. Curr Obes Rep 3, 256272.CrossRefGoogle ScholarPubMed
Monteiro, CA, Cannon, G, Levy, RB, et al. (2019) Ultra-processed foods: what they are and how to identify them. Public Health Nutr 22, 936941.CrossRefGoogle Scholar
Monteiro, CA, Levy, RB, Claro, RM, et al. (2010) A new classification of foods based on the extent and purpose of their processing. Cad Saude Publica 26, 20392049.CrossRefGoogle ScholarPubMed
Ilie, O, van Loosdrecht, MC & Picioreanu, C (2012) Mathematical modelling of tooth demineralisation and pH profiles in dental plaque. J Theor Biol 309, 159175.CrossRefGoogle ScholarPubMed
Clemens, RA, Jones, JM, Kern, M, et al. (2016) Functionality of sugars in foods and health. Compr Rev Food Sci Food Saf 15, 433470.CrossRefGoogle ScholarPubMed
United States Department of Agriculture & Agricultural Research Service (2019) FoodData Central. Washington, DC: United States Department of Agriculture, Agricultural Research Service.Google Scholar
Supplementary material: File

Cascaes et al. supplementary material

Cascaes et al. supplementary material 1

Download Cascaes et al. supplementary material(File)
File 22.8 KB
Supplementary material: File

Cascaes et al. supplementary material

Cascaes et al. supplementary material 2

Download Cascaes et al. supplementary material(File)
File 71 KB
Supplementary material: File

Cascaes et al. supplementary material

Cascaes et al. supplementary material 3

Download Cascaes et al. supplementary material(File)
File 127.7 KB