Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T23:13:06.164Z Has data issue: false hasContentIssue false

Radiocarbon Chronology of the DSDDP Core at the Deepest Floor of the Dead Sea

Published online by Cambridge University Press:  28 April 2017

Hiroyuki Kitagawa*
Affiliation:
Graduate School of Environmental Studies, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya, Japan
Mordechai Stein
Affiliation:
Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem 95501, Israel
Steven L Goldstein
Affiliation:
Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences, Columbia University, 61 Route 9W, Palisades, NY 10964, USA
Toshio Nakamura
Affiliation:
Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya, Japan
Boaz Lazar
Affiliation:
The Fredy and Nadine Hermann Institute of Earth Sciences, The Hebrew University, Edmond J. Safra Campus, Jerusalem 91904, Israel
DSDDP Scientific Party
Affiliation:
The complete list of scientists involved in the DSDDP can be found at http://www.icdp-online.org
*
*Corresponding author. Email: hiroyuki.kitagawa@nagoya-u.jp.

Abstract

This study establishes the chronological framework of the sedimentary sequence deposited Dead Sea, ICDP 5017-1, Radiocarbon chronology during the past 50 ka at the deepest part of the Dead Sea (the ICDP 5017-1 site), which was recovered by the Dead Sea Deep Drilling Project (DSDDP) under the auspices of the International Continental Scientific Drilling Program (ICDP). The age-depth model is constructed using 38 14C dates of terrestrial plant remains in a composite 150-m-long profile, generated by anchoring 32 marker layers identified in five cores. The sedimentary records at the ICDP 5017-1 site fills gaps in those obtained from the exposed sections at the high margins of the lake, particularly in times of lake-level retreat, and allows for a high-resolution comparison between the lake’s margins and deepest floor.

Type
14C as a Tracer of Past or Present Continental Environment
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

Almogi-Labin, A, Bar-Matthews, M, Shriki, D, Kolosovsky, E, Paterne, M, Schilman, B, Ayalon, A, Aizenshtat, Z, Matthews, A. 2009. Climatic variability during the last ~90 kyr of the southern and northern Levantine Basin as evident from marine records and speleothems. Quaternary Science Reviews 28(25–26):28822896.CrossRefGoogle Scholar
Bar-Matthews, M, Ayalon, A, Gilmour, M, Matthews, A, Hawkesworth, CJ. 2003. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica Cosmochimica Acta 67(17):31813199.CrossRefGoogle Scholar
Bartov, Y, Stein, M, Enzel, Y, Agnon, A, Reches, Z. 2002. Lake levels and sequence stratigraphy of Lake Lisan, the late Pleistocene precursor of the Dead Sea. Quaternary Research 57(1):921.CrossRefGoogle Scholar
Bartov, Y, Goldstein, SL, Enzel, Y, Stein, M. 2003. Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31(5):439442.Google Scholar
Blaauw, M. 2010. Methods and code for ‘classical’ age-modeling of radiocarbon sequences. Quaternary Geochronology 5(5):512518.Google Scholar
Bond, G, Broecker, W, Johnsen, S, McManus, J, Labeyrie, L, Jouzel, J, Bonani, G. 1993. Correlations between climate record from North Atlantic sediments and Greenland ice. Nature 365(6442):143147.Google Scholar
Bookman, (Ken-Tor) R, Enzel, Y, Agnon, A, Stein, M. 2004. Late Holocene lake levels of the Dead Sea. Geological Society of America Bulletin 116(5–6):555571.CrossRefGoogle Scholar
Cheng, H, Edwards, RL, Broecker, WS, Denton, GH, Kong, X, Wang, Y, Zhang, R, Wang, X. 2009. Ice age terminations. Science 326(5950):248252.Google Scholar
EPICA Community Members. 2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444(7116):195198.Google Scholar
GRIP Members. 1993. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364(6434):203207.CrossRefGoogle Scholar
Grootes, PM, Stuiver, M, White, JWC, Johnsen, S, Jouzel, J. 1993. Comparison of oxygen isotopes records from the GISP2 and GRIP Greenland ice cores. Nature 366(6455):552554.Google Scholar
Haase-Schramm, A, Goldstein, SL, Stein, M. 2004. U-Th dating of Lake Lisan (Late Pleistocene Dead Sea) aragonite and implications for glacial east Mediterranean climate change. Geochimica et Cosmochimica Acta 68(5):9851005.Google Scholar
Haliva-Cohen, A, Stein, M, Goldstein, SL, Sandler, A, Starinsky, A. 2012. Sources and transport routes of fine detritus material to the Late Quaternary Dead Sea basin. Quaternary Science Reviews 50:5570.Google Scholar
Heim, C, Nowaczyk, NR, Negendank, JFW. 1997. Near East desertification: evidence from the Dead Sea. Naturwissenschaften 84(9):398401.Google Scholar
Hong, W, Park, JH, Sung, KS, Woo, HJ, Kim, JK, Choi, HW, Kim, GD. 2010. A new 1MV AMS facility at KIGAM. Radiocarbon 52(2–3):243251.Google Scholar
Hughen, KA, Overpeck, JT, Peterson, LC, Trumbore, S. 1996. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380(6569):5154.Google Scholar
Jouzel, J, Masson-Delmotte, V, Cattani, O, Dreyfus, G, Falourd, S, Hoffmann, G, Minster, B, Nouet, J, Barnola, JM, Chap-Pellaz, J, Fischer, H, Gallet, JC, Johnsen, S, Leuenberger, M, Loulergue, L, Luethi, D, Oerter, H, Parrenin, F, Raisbeck, G, Raynaud, D, Schilt, A, Schwander, J, Selmo, E, Souchez, R, Spahni, R, Stauffer, B, Steffensen, JP, Stenni, B, Stocker, TF, Tison, JL, Werner, M, Wolff, EW. 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793797.Google Scholar
Kiro, Y, Goldstein, SL, Lazar, B, Stein, M. 2015. Environmental implications of salt facies in the Dead Sea. Geological Society of America Bulletin 128(5–6):824841.CrossRefGoogle Scholar
Machlus, M, Enzel, Y, Goldstein, SL, Marco, S, Stein, M. 2000. Reconstructing low levels of Lake Lisan by correlating fan-delta and lacustrine deposits. Quaternary International 73–74:3744.Google Scholar
Martrat, B, Grimalt, JO, Shackleton, NJ, de Abreu, L, Hutterli, MA, Stocker, TF. 2007. Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin. Science 317(5837):502507.CrossRefGoogle ScholarPubMed
Migowski, C, Agnon, A, Bookman, R, Negendank, JFW, Stein, M. 2004. Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth and Planetary Science Letters 222(1):301314.Google Scholar
Migowski, C, Stein, M, Prasad, S, Negendank, JFW, Agnon, A. 2006. Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quaternary Research 66:421431.CrossRefGoogle Scholar
Mook, WG, Streurman, H. 1983. Physical and chemical aspects of radiocarbon dating. PACT 8:3155.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.Google Scholar
Nakagawa, T, Kitagawa, H, Yasuda, Y, Tarasov, PE, Nishida, K, Gotanda, K, Sawai, Y, Yangtze River Civilization Program Members. 2003. Asychronous climatic changes in the North Atlantic and Japan during the Last Termination. Science 299(5607):688691.Google Scholar
Nakagawa, T, Tarasov, PE, Kitagawa, H, Yasuda, Y, Gotanda, K. 2006. Seasonally specific responses of the East Asian monsoon to deglacial climate changes. Geology 34(7):521524.Google Scholar
Nakamura, T, Niu, E, Oda, H, Ikeda, A, Minamia, M, Takahashi, H, Adachi, M, Pals, L, Gottdang, A, Suya, N. 2000. The HVEE Tandetron AMS system at Nagoya University. Nuclear Instruments and Methods in Physics Research B 172(1–4):5257.Google Scholar
Nakamura, T, Niu, E, Oda, H, Ikeda, A, Minami, M, Ohta, T, Oda, T. 2004. High precision 14C measurement with the HVEE Tandetron AMS system at Nagoya University. Nuclear Instruments and Methods in Physics Research B 223–224:124129.Google Scholar
Neugebauer, I, Brauer, A, Schwab, MJ, Waldmann, ND, Enzel, Y, Kitagawa, H, Torfstein, A, Frank, U, Dulski, P, Agnon, A, Ariztegui, D, Ben-Avraham, Z, Goldstein, SL, Stein, M, DSDDP Scientific Party. 2014. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews 102:149165.Google Scholar
Neugebauer, I, Brauer, A, Schwab, MJ, Dulski, P, Frank, U, Hadzhiivanova, E, Kitagawa, H, Litt, T, Schiebel, V, Taha, N, Waldmann, ND, DSDDP Scientific Party. 2015. Evidences for centennial dry periods at ~3300 and ~2800 cal. yr BP from microfacies analyses of the Dead Sea sediments. The Holocene 25(8):13581371.Google Scholar
NGRIP (North GRIP Ice Core Project) Members. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147151.CrossRefGoogle Scholar
Prasad, S, Vos, H, Negendank, JFW, Waldmann, N, Goldstein, SL, Stein, M. 2004. Evidence from Lake Lisan of solar influence on decadal- to centennial-scale climate variability during marine oxygen isotope stage 2. Geology 32(7):581584.CrossRefGoogle Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org (R version 3.0.1).Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Scholz, D, Hoffmann, DL. 2011. StalAge - an algorithm designed for construction of speleothem age models. Quaternary Geochronology 6:3682.Google Scholar
Southon, J, Santos, GM. 2004. Ion source development at KCCAMS, University of California. Radiocarbon 46(1):3339.Google Scholar
Southon, J, Santos, G, Druffel-Rodriguez, K, Druffel, E, Trumbore, S, Xu, X, Griffin Ali, S, Mazon, M. 2004. The KECK Carbon cycle AMS laboratory, University of California, Irvine: initial operation and a background surprise. Radiocarbon 46(1):4149.Google Scholar
Stein, M. 2014. The evolution of Neogene-Quaternary water-bodies in the Dead Sea Rift Valley. In: Garfunkel Z, Ben-Avraham Z, Kagan E, editors. Dead Sea Transform Fault System: Reviews. Dordrecht: Springer. p 279316.Google Scholar
Stein, M, Torfstein, A, Gavrieli, I, Yechieli, Y. 2010. Abrupt aridities and salt deposition in the post-glacial Dead Sea and their North Atlantic connection. Quaternary Science Reviews 29:567575.Google Scholar
Stein, M, Ben-Avraham, Z, Goldstein, SL. 2011. Dead Sea deep cores: a window into past climate and seismicity. Eos, Transactions American Geophysical Union 92:453454.Google Scholar
Svensson, A, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Davies, SM, Johnsen, SJ, Muscheler, R, Parrenin, F, Rasmussen, SO, Röthlisberger, R, Seierstad, I, Steffensen, JP, Vinther, BM. 2008. A 60000 year Greenland stratigraphic ice core chronology. Climate of the Past 4:4757.Google Scholar
Torfstein, A, Haase-Schramm, A, Waldmann, N, Kolodny, Y, Stein, M. 2009. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea basin). Geochimica et Cosmochimica Acta 73:26032630.CrossRefGoogle Scholar
Torfstein, A, Goldstein, SL, Kagan, EJ, Stein, M. 2013a. Integrated multi-site U-Th chronology of the Last Glacial Lake Lisan. Geochimica et Cosmochimica Acta 104:210231.Google Scholar
Torfstein, A, Goldstein, SL, Stein, M, Enzel, Y. 2013b. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quaternary Science Reviews 69:17.Google Scholar
Torfstein, A, Goldstein, SL, Kushnir, Y, Enzel, Y, Haug, G, Stein, M. 2015. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters 412:235244.Google Scholar
Waldmann, N, Stein, M, Ariztegui, D, Starinsky, A. 2009. Stratigraphy, depositional environments and level reconstruction of the Last Interglacial Lake Samra in the Dead Sea basin. Quaternary Research 72:115.CrossRefGoogle Scholar
Wang, Y, Cheng, H, Edwards, RL, An, Z, Wu, J, Chen, C-C, Dorale, JA. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294(5550):23452348.Google Scholar
Wang, Y, Cheng, H, Edwards, RL, Kong, X, Shao, X, Chen, S, Wu, J, Jiang, X, Wang, X, An, Z. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451(7182):10901093.Google Scholar