Skip to main content Accessibility help
×
  • Cited by 37
Publisher:
Cambridge University Press
Online publication date:
November 2010
Print publication year:
2010
Online ISBN:
9780511919251

Book description

Turbulence is a huge subject of ongoing research. This book bridges the modern development in dynamical systems theory and the theory of fully developed turbulence. Many solved and unsolved problems in turbulence have equivalencies in simple dynamical models, which are much easier to handle analytically and numerically. This book gives a modern view of the subject by first giving the essentials of the theory of turbulence before moving on to shell models. These show much of the same complex behaviour as fluid turbulence, but are much easier to handle analytically and numerically. Any necessary maths is explained and self-contained, making this book ideal for advanced undergraduates and graduate students, as well as researchers and professionals, wanting to understand the basics of fully developed turbulence.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
André, J. C., & Lesieur, M. 1977. Influence of helicity on high Reynolds number isotropic turbulence. J. Fluid Mech., 81, 187–207.
Anselmet, F., Gagne, Y., Hopfinger, E. J., & Antonia, R. A. 1984. High-order velocity structure functions in turbulent shear flow. J. Fluid Mech., 140, 63–89.
Aurell, E., Boffetta, G., Crisanti, A., et al. 1994. Statistical mechanics of shell models for two-dimensional turbulence. Phys. Rev. E, 50, 4705–15.
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., & Vulpiani, A. 1996a. Growth of noninfinitesimal perturbations in turbulence. Phys. Rev. Lett., 77, 1262–5.
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., & Vulpiani, A. 1996b. Predictability in systems with many characteristic times: The case of turbulence. Phys. Rev. E, 53, 2337–49.
Biferale, L., Lambert, A., Lima, R., & Paladin, G. 1995. Transition to chaos in a shell model of turbulence. Physica D, 80, 105–19.
Biferale, L., Pierotti, D., & Toschi, F. 1998. Helicity transfer in turbulent models. Phys. Rev. E, 57, R2515–8.
Boer, G. J., & Shepherd, T. G. 1983. Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164–84.
Bohr, T., Jensen, M., Paladin, G., & Vulpiani, A. 1998. Dynamical Systems Approach to Turbulence. Cambridge, Cambridge University Press.
Borue, V., & Orszag, S. A. 1997. Spectra in helical three-dimensional homogeneous isotropic turbulence. Phys. Rev. E, 55, 7005–9.
Brissaud, A., Frisch, U., Leorat, J., Lesieur, M., & Mazure, A. 1973. Helicity cascade in fully developed isotropic turbulence. Phys. Fluids, 16, 1366–7.
Charney, J. G. 1971. Geostropic turbulence. J. Atmos. Sci., 28, 1087–95.
Charney, J. G., & Stern, M. E. 1962. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159–72.
Chkhetiani, O. G. 1996. On the third moments in helical turbulence. JETP Lett., 63, 808–12.
,Clay Mathematics Institute. 2000. Seven Problems of the Millenium. www.claymath.org/prizeproblems.
Comte-Bellot, G., & Corrsin, S. 1971. Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech., 48, 273–337.
Crisanti, A., Jensen, M. H., Vulpiani, A., & Paladin, G. 1993a. Intermittency and predictability in turbulence. Phys. Rev. Lett., 70, 166–9.
Crisanti, A., Vulpiani, A., Jensen, M. H., & Paladin, G. 1993b. Predictability and the butterfly effect in turbulent flows: A shell model study. Int. J. Bifurcation Chaos, 3, 1581–5.
Desnyansky, V. N., & Novikov, E. A. 1974. The evolution of turbulence spectra to the similarity regime. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 10, 127–36.
Ditlevsen, P. D. 1996. Temporal intermittency and cascades in shell models of turbulence. Phys. Rev. E., 54, 985–8.
Ditlevsen, P. D. 1997. Cascades of energy and helicity in the GOY shell model of turbulence. Phys. Fluids, 9, 1482–4.
Ditlevsen, P. D. 2000. Symmetries, invariants, and cascades in a shell model of turbulence. Phys. Rev. E, 62, 484–9.
Ditlevsen, P. D., & Giuliani, P. 2000. Anomalous scaling in a shell model of helical turbulence. Physica A, 280, 69–74.
Ditlevsen, P. D., & Giulani, P. 2001a. Cascades in helical turbulence. Phys. Rev. E., 63, 036304.
Ditlevsen, P. D., & Giuliani, P. 2001b. Dissipation in helical turbulence. Phys. Fluids, 13, 3508–9.
Ditlevsen, P. D., & Mogensen, I. A. 1996. Cascades and statistical equilibrium in shell models of turbulence. Phys. Rev. E, 53, 4785–93.
Ditlevsen, P. D., Jensen, M. H., & Olesen, P. 2004. Scaling and the prediction of energy spectra in decaying hydrodynamic turbulence. Physica A, 342, 471–8.
Frick, P., & Sokoloff, D. 1998. Cascade and dynamo action in a shell model of magnetohydrodynamic turbulence. Phys. Rev. E, 57, 4155–64.
Frisch, U. 1995. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge.
Frisch, U., & Parisi, G. 1985. On the singular structure of fully developed turbulence. Pages 84–87 of: Ghil, M., Benzi, R., & Parisi, G. (eds.), Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Amsterdam/New/York/Oxford/Tokyo: North-Holland Publ. Co.
Gibson, J. K., Källberg, P., Uppala, S., et al. 1997. ECMWF re-analysis report series, vol. 1. ERA Description. European Center for Medium Range Weather Forecast, Reading, UK, 72pp.
Gledzer, E. B. 1973. System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Dokl. SSSR, 18, 216–7.
Goldstein, H. 1980. Classical Mechanics. 2nd edition. Reading, MA, Addison-Wesley.
Grassberger, P., & Procaccia, I. 1983. Measuring the strangeness of strange attractors. Physica D, 9, 189–208.
Grigoriu, M. O., Ditlevsen, P. D., & Arwade, S. R. 2003. A Monte Carlo simulation model for stationary non-Gaussian processes. Probabilistic Engineering Mechanics, 18, 87–95.
Grossmann, S., & Lohse, D. 1994. Universality in fully-developed turbulence. Phys. Rev. E, 50, 2784–9.
Gurbatov, S. N., Simdyankin, S. I., Aurell, E., Frisch, U., & Tóth, G. 1997. On the decay of Burgers turbulence. J. Fluid Mech., 344, 339–74.
Holton, J. R. 1992. An Introduction to Dynamic Meteorology. Third edition. San Diego, Academic Press.
Jensen, M. H., Paladin, G., & Vulpiani, A. 1991. Intermittency in a cascade model for three-dimensional turbulence. Phys. Rev. A, 43, 798–805.
Jensen, M. H., Paladin, G., & Vulpiani, A. 1992. Shell model for turbulent advection of passive-scaler fields. Phys. Rev. A, 45, 7214–21.
Kadanoff, L., Lohse, D., Wang, J., & Benzi, R. 1995. Scaling and dissipation in the GOY shell model. Phys. Fluids, 7, 617–29.
Kadanoff, L., Lohse, D., & Schörghofer, N. 1997. Scaling and linear response in the GOY turbulence model. Physica D, 100, 165–86.
Kang, H. S., & Meneveau, C. 2001. Passive scalar anisotropy in a heated turbulent wake: New observations and implications for large-eddy simulations. J. Fluid Mech., 442, 161–70.
Kaplan, J. L., & Yorke, J. A. 1979. Preturbulence-regime observed in a fluid-flow model of Lorenz. Commun. Math. Phys., 67, 93–108.
Kerr, R., & Biferale, L. 1995. On the role of inviscid invariants in shell models of turbulence. Phys. Rev. E, 52, 6113–22.
Kolmogorov, A. N. 1941a. Dissipation of energy in locally isotropic turbulence. C. R. (Dokl.) Acad. Sci. SSSR, 32, 16–18.
Kolmogorov, A. N. 1941b. Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. C. R. (Dokl.) Acad. Sci. SSSR, 30, 299.
Kolmogorov, A. N. 1941c. On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. C. R. (Dokl.) Acad. Sci. SSSR, 31, 538–540.
Kolmogorov, A. N. 1962. Arefinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 5, 82–5.
Kraichnan, R. H. 1967. Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 1417–23.
Kraichnan, R. H. 1971. Inertial-range transfer in 2-dimensional and 3-dimensional turbulence. J. Fluid Mech., 47, 525–35.
Kraichnan, R. H., & Montgomery, D. 1980. Two-dimensional turbulence. Rep. Prog. Phys., 43, 547–619.
Landau, L. D., & Lifshitz, E. M. 1987. Fluid Mechanics, 2nd edition. Oxford, Pergamon Press.
Leray, J. 1934. Sur le mouvement d'un liquide visquex emplissement l'espace. Acta Math. J., 63, 193–248.
Lesieur, M. 1997. Turbulence in Fluids, 3rd Revised and enlarged edition. Dordrecht, Kluwer Academic Publishers.
Lindborg, E. 1999. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–88.
Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–41.
Lorenz, E. N. 1969. The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307.
Lorenz, E. N. 1972. Low order models representing realizations of turbulence. J. Fluid Mech., 55, 545–63.
L'vov, V. S., Podivilov, E., & Procaccia, I. 1997. Exact result for the 3rd order correlations of velocity in turbulence with helicity. chao-dyn/9705016.
L'vov, V. S., Podivilov, E., Pomyalov, A., Procaccia, I., & Vandembroueq, D. 1998. Improved shell model of turbulence. Phys. Rev. E, 58, 1811–22.
Mandelbrot, B. 1977. Fractals: Form, Chance and Dimension. San Francisco, Freeman & Co.
Mohamed, M. S., & LaRue, J. C. 1990. The decay power law in grid-generated turbulence. J. Fluid Mech., 219, 195–214.
Monin, A. S., & Yaglom, A. M. 1981. Statistical Fluid Mechanics: Mechanics of Turbulence, Volumes 1+2. Cambridge, MA, The MIT Press.
Nastrom, G. D., & Gage, K. S. 1985. A climatology of atmospheric wavenumber spectra observed by commercial aircraft. J. Atmos. Sci., 42, 950–60.
Obukhov, A. M. 1962. Some specific features of atmospheric turbulence. J. Fluid Mech., 13, 77–81.
Obukhov, A. M. 1971. On some general characteristics of the equations of the dynamics of the atmosphere. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 7, 695–704.
Olesen, P. 1997. Inverse cascades and primordial magnetic fields. Phys. Lett. B, 398, 321–25.
Olla, P. 1998. Three applications of scaling to inhomogeneous, anisotropic turbulence. Phys. Rev. E, 57, 2824–31.
Pedlosky, J. 1987. Geophysical Fluid Dynamics, 2nd edition. New York, Springer-Verlag.
Pope, S. B. 2000. Turbulent Flows. Cambridge, Cambridge University Press.
Richardson, L. F. 1922. Weather Prediction by Numerical Process. Cambridge, Cambridge University Press.
Ruelle, D. 1979. Microscopic fluctuations and turbulence. Phys. Lett. A, 72, 81–2.
Saltzman, B. 1962. Finite amplitude free convection as an initial value problem. J. Atmos. Sci., 19, 329–41.
Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.
She, Z. S., Aurell, E., & Frisch, U. 1992. The inviscid Burgers equation with initial conditions of Brownian type. Comm. Math. Phys., 148, 623–641.
Straus, D. M., & Ditlevsen, P. 1999. Two-dimensional turbulence properties of the ECMWF reanalysis. Tellus, 51A, 749–72.
Vergassola, M., Dubrulle, B., Frisch, U., & Noullez, A. 1994. Burger's equation, Devil's staircases and the mass distribution for large-scale structures. Astron. Astrophys., 289, 325–56.
von Kármán, T., & Howarth, L. 1938. On the statistical theory of isotropic turbulence. Proc. R. Soc. London, A 164, 192–215.
Waleffe, F. 1992. The nature of triad interactions in homogeneous turbulence. Phys. Fluids A-Fluid Dynamics, 4, 350–63.
Wiin-Nielsen, A. 1967. On annual variation and spectral distribution of atmospheric energy. Tellus, 19, 540–59.
Wiin-Nielsen, A. 1972. A study of power laws in the atmospheric kinetic energy spectrum using spherical harmonic functions. Meteor. Ann., 6, 107–24.
Yamada, M., & Okhitani, K. 1988a. Lyapunov spectrum of a model of two-dimensional turbulence. Phys. Rev. Lett., 60, 983–6.
Yamada, M., & Okhitani, K. 1988b. The inertial subrange and non-positive Lyapunov exponents in fully-developed turbulence. Progr. Theo. Phys., 79, 1265–68.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.