Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T15:04:40.504Z Has data issue: false hasContentIssue false

14 - Flame retardant SBS–clay nanocomposites

from Part II - Flame retardancy

Published online by Cambridge University Press:  05 August 2011

Vikas Mittal
Affiliation:
The Petroleum Institute, Abu Dhabi
Get access

Summary

Layered silicates

The idea of flame retardant materials dates back to about 450 BC, when the Egyptians used alum to reduce the flammability of wood. The Romans (in about 200 BC) used a mixture of alum and vinegar to reduce the combustibility of wood. Today, there are more than 175 chemicals classified as flame retardants. The major groups are inorganic, halogenated, organic, organophosphorus, and nitrogen-based flame retardants, which account for 50%, 25%, 20%, and >5% of the annual production, respectively.

In many cases, existing flame retardant systems show considerable disadvantages. The application of aluminum trihydrate and magnesium hydroxide requires a very high portion of the filler to be deployed within the polymer matrix; filling levels of more than 60 wt% are necessary to achieve suitable flame retardancy, for example, in cables and wires. Clear disadvantages of these filling levels are the high density and the lack of flexibility of end products, the poor mechanical properties, and the problematic compounding and extrusion steps.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaeea, M.Ariasb, P.Sjodinc, A.Bergman, A.An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of releaseEnvironment International 29 2003Google Scholar
Beyer, G.Nanocomposites: A new class of flame retardants for polymersPlastics Additives and Compounding 4 2002CrossRefGoogle Scholar
Beyer, G.Nanocomposites offer new way forward for flame retardantsPlastics Additives and Compounding 7 2005CrossRefGoogle Scholar
Murphy, J.Flame retardants: Trends and new developmentsPlastics Additives and Compounding 3 2001CrossRefGoogle Scholar
Bergaya, F.Theng, B. K. G.Handbook of Clay ScienceBergaya, F.Theng, B. K. G.Lagaly, G.AmsterdamElsevier 2006Google Scholar
Pavlidou, S.Papaspyrides, C. D.A review on polymer–layered silicate nanocompositesProgress in Polymer Science 33 2008CrossRefGoogle Scholar
Brigatti, M. F.Galan, E.Theng, B. K. G.Lagaly, G.Ogawa, M.Dékany, I.Handbook of Clay ScienceBergaya, F.Theng, B. K. G.Lagaly, G.AmsterdamElsevier 2006Google Scholar
Ori, G. 2009
Stadler, M.Schindler, P. W.Modeling of H+ and Cu+ adsorption on calcium-montmorilloniteClays Clay Minerals 41 1993CrossRefGoogle Scholar
Comets, J.Kevan, L.Adsorption of ammonia and pyridine on copper(II)-doped magnesium-exchanged smectite clays studied by electron spin resonanceJournal of Physical Chemistry 97 1993Google Scholar
Van Bladel, R.Halen, H.Cloos, P.Calcium–zinc and calcium–cadmium exchange in suspensions of various types of claysClay Minerals 28 1993CrossRefGoogle Scholar
Matsuda, T.Yogo, K.Pantawong, C.Kikuchi, E.Catalytic properties of copper-exchanged clays for the dehydrogenation of methanol to methyl formateApplied Catalysis A: General 126 1995CrossRefGoogle Scholar
Wagner, J.Chen, H.Brownawell, B. J.Westall, J. C.Use of cationic surfactants to modify soil surfaces to promote sorption and retard migration of hydrophobic organic compoundsEnvironmental Science and Technology 28 1994CrossRefGoogle ScholarPubMed
Brigatti, M. F.Corradini, F.Franchini, G. C.Mazzoni, S.Medici, L.and L. Poppi, Interaction between montmorillonite and pollutants from industrial waste-waters: Exchange of Zn2+ and Pb2+ from aqueous solutionsApplied Clay Science 9 1995CrossRefGoogle Scholar
Auboiroux, M.Bailif, P.Touray, J. C.Bergaya, F.Fixation of Zn2+ and Pb2+ by Ca-montmorillonite in brines and dilute solutions: Preliminary resultsApplied Clay Science 11 1996CrossRefGoogle Scholar
Sheng, G.Xu, S.Boyd, S. A.Mechanisms controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matterEnvironmental Science and Technology 30 1996CrossRefGoogle Scholar
Ayuso, E. Á.Sánchez, A. G.Removal of heavy metals from waste waters by natural and Na-exchanged bentonitesClays Clay Minerals 51 2003Google Scholar
Abollino, O.Giacomino, A.Malandrino, M.Mentasti, E.Interactions of metal ions with montmorillonite and vermiculiteApplied Clay Science 38 2008CrossRefGoogle Scholar
Bhattacharyya, K. G.Gupta, S. S.Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A reviewAdvances in Colloid Interface Science 140 2008CrossRefGoogle ScholarPubMed
Dove, P. M.Nix, C. J.The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartzGeochimica et Cosmochimica Acta 61 1997CrossRefGoogle Scholar
Brigatti, M. F.Manfredini, T.Montorsi, M.Ori, G.Siligardi, C.
Cygan, R. T.Greathouse, J. A.Heinz, H.Kalinichev, A. G.Molecular models and simulations of layered materialsJournal of Materials Chemistry 19 2009CrossRefGoogle Scholar
Tambach, T. J.Bolhuis, P. G.Smit, B.A molecular mechanism of hysteresis in clay swellingAngewandte Chemie International Edition 43 2004CrossRefGoogle ScholarPubMed
Liu, X. D.Lu, X. C.A thermodynamic understanding of clay-swelling inhibition by potassium ionsAngewandte Chemie International Edition 45 2006CrossRefGoogle ScholarPubMed
Smith, D. E.Wang, Y.Whitley, H. D.Molecular simulations of hydration and swelling in clay mineralsFluid Phase Equilibria 2004CrossRefGoogle Scholar
Heinz, H.Vaia, R. A.Krishnamoorti, R.Farmer, B. L.Self-assembly of alkylammonium chains on montmorillonite: Effect of chain length, head group structure, and cation exchange capacityChemistry of Materials 19 2007CrossRefGoogle Scholar
Fu, Y.-T.Heinz, H.Cleavage energy of alkylammonium-modified montmorillonite and relation to exfoliation in nanocomposites: Influence of cation density, head group structure, and chain lengthChemistry of Materials 22 2010CrossRefGoogle Scholar
Mainil, M.Alexandre, M.Monteverde, F.Dubois, P.polyethylene organo-clay nanocomposites: The role of the interface chemistry on the extent of clay intercalation/exfoliationJournal of Nanoscience Nanotechnology 6 2006CrossRefGoogle ScholarPubMed
Rajan, M. A. J.Mathavan, T.Ramasubbu, A.Thaddeus, A.Latha, V. F.Vivekanandam, T. S.Umapathy, S.Thermal properties of PMMA/montmorillonite clay nanocompositesJournal of Nanoscience Nanotechnology 6 2006Google ScholarPubMed
Zhang, J. G.Jiang, D. D.Wilkie, C. A.Fire properties of styrenic polymer–clay nanocomposites based on an oligomerically-modified clayPolymer Degradation and Stability 91 2006Google Scholar
Zhang, J. G.Jiang, D. D.Wilkie, C. A.Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clayPolymer Degradation and Stability 91 2006Google Scholar
Sainz-Diaz, C. I.Laguna, A. H.Dove, M. T.Modeling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentialsPhysics and Chemistry of Minerals 28 2001CrossRefGoogle Scholar
Freeman, C. L.Harding, J. H.Cooke, D. J.Elliott, J. A.Lardge, J. S.Duffy, D. M.New forcefields for modeling biomineralization processesJournal of Physical Chemistry C 111 2007CrossRefGoogle Scholar
Harding, J. H.Duffy, D. M.Sushko, M. L.Mark Rodger, P.Quigley, D.Elliott, J. A.Computational techniques at the organic–inorganic interface in biomineralizationChemical Reviews 108 2008CrossRefGoogle ScholarPubMed
Manfredini, T.Montorsi, M.Ori, G.Siligardi, C.
Heinz, H.Vaia, R. A.Farmer, B. L.Interaction energy and surface reconstruction between sheets of layered silicatesJournal of Chemical Physics 124 2006CrossRefGoogle ScholarPubMed
Bottino, F. A.Fabbri, E.Fragalà, I. L.Malandrino, G.Orestano, A.Pilati, F.Pollicino, A.Polystyrene–clay nanocomposites prepared with polymerizable imidazolium surfactantsMacromolecular Rapid Communications 24 2003CrossRefGoogle Scholar
Kim, N. H.Malhotra, S. V.Xanthos, M.Modifications of cationic nanoclays with ionic liquidsMicroporous and Mesoporous Materials 96 2006CrossRefGoogle Scholar
Chua, Y. C.Wu, S.Lu, X.Polye(thylene naphthalene)/clay nanocomposites based on thermally stable trialylimidalium-treated montmorillonite: Thermal and dynamic mechanical propertiesJournal of Nanoscience Nanotechnology 6 2006CrossRefGoogle Scholar
Krishnan, P. S. G.Joshi, M.Bhargava, P.Valiyaveettil, S.He, C.Effect of heterocyclic based organoclays on the properties of polyimide–clay nanocompositesJournal of Nanoscience Nanotechnology 5 2005 1148CrossRefGoogle ScholarPubMed
Bellucci, F.Camino, G.Frache, A.Sarra, A.Catalytic charring–volatilization competition in organoclay nanocompositesPolymer Degradation and Stability 92 2007CrossRefGoogle Scholar
Cervantes-Uc, J. M.Cauich-Rodriguez, J. V.Vazquez-Torres, H.Garfias-Mesias, L. F.Paul, D. R.Thermal degradation of commercially available organoclays studied by TGA-FTIRThermochimica Acta 457 2007 92CrossRefGoogle Scholar
Zaikov, G. E.Lomakin, S. M.Ecological issue of polymer flame retardancyJournal of Applied Polymer Science 86 2002 2449CrossRefGoogle Scholar
Levchik, S. V.Levchink, G. F.Balabanovich, A. I.Camino, G.Costa, L.Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free retardantsPolymer Degradation and Stability 54 1996 217CrossRefGoogle Scholar
Horacek, H.Grabner, R.Advantages of flame retardants based on nitrogen compoundsPolymer Degradation and Stability 54 1996 205CrossRefGoogle Scholar
Weil, E. D.Choudhary, V.Flame-retarding plastics and elastomers with melamineJournal of Fire Sciences 13 1995CrossRefGoogle Scholar
Morgan, A. B.Wilkie, C. A.Flame Retardant Polymer NanocompositesHoboken, NJ/ChichesterWiley–VCH 2007CrossRefGoogle Scholar
Awad, W. H.Gilman, J. W.Nyden, M.Harris, R. H.Sutto, J. T.Callahan, J.Trulove, P. C.De Long, H. C.Fox, D. M.Thermal degradation studies of alkyl-imidazolium salts and their application in nanocompositesThermochimica Acta 409 2004CrossRefGoogle Scholar
Fox, D. M.Awad, W. H.Gilman, J. W.Maupin, P. H.De Long, H. C.Trulove, P. C.Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium saltsGreen Chemistry 5 2003Google Scholar
Fox, D. M.Gilman, J. W.De Long, H. C.Trulove, P. C.TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminantsJournal of Chemical Thermodynamics 37 2005 900CrossRefGoogle Scholar
Langat, J.Bellayer, S.Hudrlik, P.Hudrlik, A.Maupin, P. H.Gilman, J. W.Raghavan, D.Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocompositesPolymer 47 2006CrossRefGoogle Scholar
Cui, L.Bara, J. E.Brun, Y.Yoo, Y.Yoon, P. J.Paul, D. R.Polyamide- and polycarbonate-based nanocomposites prepared from thermally stable imidazolium organoclayPolymer 50 2009CrossRefGoogle Scholar
Fox, D. M.Gilman, J. W.Morgan, A. B.Shields, J. R.Maupin, P. H.Lyon, R. E.De Long, H. C.Trulove, P. C.Flammability and thermal analysis characterization of imidazolium-based ionic liquidsIndustrial Engineering Chemistry Research 47 2008CrossRefGoogle Scholar
Laoutid, F.Bonnaud, L.Alexandre, M.Lopez-Cuesta, J.-M.Dubois, Ph.New prospects in flame retardant polymer materials: From fundamentals to nanocompositesMaterials Science and Engineering: Reports 63 2009Google Scholar
Si, M.Zaitsev, V.Goldman, M.Frenkel, A.Peiffer, D. G.Well, E.Sokolov, J. C.Rafailovich, M. H.Self-estinguishing polymer/organoclay nanocompositesPolymer Degradation and Stability 92 2007CrossRefGoogle Scholar
Carastan, D. J.Demarquette, N. R.Microstructure of nanocomposites of styrenic polymersMacromolecular Symposia 233 2006CrossRefGoogle Scholar
Carastan, D. J.Demarquette, N. R.Vermogen, A.Varlot, K. M.Linear viscoelascticity of styrenic block copolymers–clay nanocompositesRheologica Acta 47 2008CrossRefGoogle Scholar
Chen, Z.Feng, R.Preparation and characterization of poly(styrene-b-butadiene-b-styrene)/montmorillonite nanocompositesPolymer Composites 30 2009CrossRefGoogle Scholar
Zhang, Z.Zhang, L.Li, Y.Xu, H.Styrene-butadiene/montomorillonite nanocomposites synthesized by anionic polymerizationJournal of Applied Polymer Science 99 2006CrossRefGoogle Scholar
Laus, M.Francescangeli, O.Sandrolini, F.New hybrid nanocomposites based on organophilic clay and poly(styrene-b-butadiene) copolymersJournal of Materials Research 12 1997CrossRefGoogle Scholar
Liao, M.Zhu, J.Xu, H.Li, Y.Shan, W.Preparation and structure and mechanical properties of poly(styrene-b-butadiene)/clay nanocompositesJournal of Applied Polymer Science 92 2004CrossRefGoogle Scholar
Xu, H.Li, Y.Yu, D.Studies on the poly(styrene-b-butadiene-b-styrene)/clay nanocomposites prepared by melt intercalationJournal of Applied Polymer Science 98 2005CrossRefGoogle Scholar
Lietz, S.Yang, J.-L.Bosch, E.Sandler, J. K. W.Zhang, Z.Altstadt, V.Improvement of the mechanical properties and creep resistance of SBS block copolymers by nanoclay fillersMacromolecular Materials and Engineering 292 2007CrossRefGoogle Scholar
Yamaguchi, T.Yamada, E.Preparation and mechanical properties of clay/polystyrene-block-polybutadiene-block-polystyrene triblock copolymer (SBS) intercalated nanocomposites using organoclay containing stearic acidPolymer International 55 2006CrossRefGoogle Scholar
da Silva, P. A.Jacobi, M. M.Schneider, L. K.Barbosa, R. V.Countinho, P. A.Oliverira, R. V. B.Mauler, R. S.SBS nanocomposites as toughening agent for polypropylenePolymer Bulletin 64 2010CrossRefGoogle Scholar
Polacco, G.Kriz, P.Filippi, S.Stastna, J.Biondi, D.Zanzotto, L.Rheological properties of asphalt/SBS/clay blendsEuropean Polymer Journal 44 2008CrossRefGoogle Scholar
Zhang, W.Zeng, J.Fang, L. L.Fang, Y.A novel property of styrene–butadiene–styrene/clay nanocomposites: Radiation resistanceJournal of Material Chemistry 14 2004CrossRefGoogle Scholar
Lee, B.-L.Soft Zero Halogen Flame Retardant Thermoplastic Elastomers 2009
Lee, B.-L.Worley, D. C.Flame-Retardant Thermoplastic Elastomer Compositions 2009
Watanabe, M.Hashimoto, H.Tokuda, S.Flame-Retardant Resin Compositions and Insulated Electric Wires Coated Therewith 2004
Comes Franchini, M.Fabbri, P.Frache, A.Ori, G.Messori, M.Siligardi, C.Ricci, A.Bentonite-based organoclays as innovative flame retardants agents for SBS copolymerJournal of Nanoscience and Nanotechnology 8 2008Google Scholar
Zerweck, W.Keller, K. 1941
Lagaly, G.Ogawa, M.Dékany, I.Handbook of Clay ScienceBergaya, F.Theng, B. K. G.Lagaly, G.AmsterdamElsevier 2006Google Scholar
Osman, M. A.Ploetze, M.Suter, U. W. J.Surface treatment of clay minerals – thermal stability, basal-plane spacing and surface coverageJournal of Material Chemistry 13 2003CrossRefGoogle Scholar
Zeng, Q. H.Yu, A. B.Lu, G. Q.Standish, R. K.Molecular dynamics simulation of the structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclaysJournal of Physical Chemistry B 108 2004CrossRefGoogle Scholar
Lim, Y. T.Park, O. O.Microstructure and rheological behavior of block copolymer/clay nanocompositesKorean Journal of Chemical Engineering 18 2001CrossRefGoogle Scholar
Alexandre, M.Dubois, P.Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materialsMaterials Science and Engineering: Reports 28 2000Google Scholar
Shah, R. K.Paul, D. R.Nylon 6 nanocomposites prepared by a melt mixing masterbatch processPolymer 45 2004CrossRefGoogle Scholar
Yoon, J. T.Jo, W. H.Lee, M. S.Ko, M. B.Effects of co-monomers and shear on the melt intercalation of styrenics/clay nanocompositesPolymer 42 2001CrossRefGoogle Scholar
Leszczynska, A.Njuguna, J.Pielichowski, K.Banerjee, J. R.Polymer/montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvementThermochimica Acta 453 2007CrossRefGoogle Scholar
Xie, W.Gao, Z.Pan, W.-P.Hunter, D.Singh, A.Vaia, R.Thermal degradation chemistry of alkyl quaternary ammonium montmorilloniteChemistry Materials 13 2001CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×