Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-10T02:11:04.782Z Has data issue: false hasContentIssue false

13 - Interactions of enteric bacteria with the intestinal mucosa

from Part IV - Exploitation of host niches by pathogenic bacteria: mechanisms and consequences

Published online by Cambridge University Press:  12 August 2009

Samuel Tesfay
Affiliation:
Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA
Donnie Edward Shifflett
Affiliation:
Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA
Gail A. Hecht
Affiliation:
Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

INTRODUCTION

Bacteria colonize the gastrointestinal tract as early as a few hours after birth. This relationship that develops at an early stage between humans and bacteria is shared with other mammals. Gastrointestinal epithelial cells play a crucial role in maintaining a quiescent environment while being bathed with normal flora, and yet at the same time they must possess functions that allow them to participate in immune surveillance. In addition to screening for and responding to the presence of pathogens in the intestinal lumen, gastrointestinal epithelial cells provide barrier function and transport of ions and solutes.

Enteric pathogens, as opposed to normal flora, cause disease by exploiting the host cytoskeleton or signaling pathways, which ultimately alters the physiologic functions of the intestinal epithelium. For example, pathogens can induce or suppress inflammatory responses, alter the transport of fluid, solutes, and ions, perturb the tight-junction barrier, and activate programmed cell death (apoptosis). This chapter summarizes the cross-talk between bacterial pathogens and host cells that leads to gastrointestinal symptoms.

ENTERIC PATHOGENS AND INTESTINAL EPITHELIAL CELL RECEPTORS

The interaction that occurs between pathogenic or non-pathogenic bacteria and intestinal epithelial cells begins with the adherence of bacteria to the cellular surface. This is a common mechanism by which bacteria cause disease, not only in the gastrointestinal tract but also in other systems where epithelial cells face the external environment, such as the genitourinary and respiratory systems. Adherence of bacteria to the cellular surface is essential to reduce the washout effect caused by intestinal secretion and peristalsis.

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 356 - 399
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680.CrossRefGoogle ScholarPubMed
Anderson, J. M. and Itallie, C. M. (1995). Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. 269, G467–G475.Google ScholarPubMed
Andreeva, A. Y., Krause, E., Muller, E. C., Blasig, I. E., and Utepbergenov, D. I. (2001). Protein kinase C regulates the phosphorylation and cellular localization of occludin. J. Biol. Chem. 276, 38 480–38 486.CrossRefGoogle ScholarPubMed
Balda, M. S., Whitney, J. A., Flores, C., et al. (1996). Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell. Biol. 134, 1031–1049.CrossRefGoogle ScholarPubMed
Balda, M. S., Flores-Maldonado, C., Cereijido, M., and Matter, K. (2000). Multiple domains of occludin are involved in the regulation of paracellular permeability. J. Cell. Biochem. 78, 85–96.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Barrett, K. E. and Keely, S. J. (2000). Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu. Rev. Physiol. 62, 535–572.CrossRefGoogle ScholarPubMed
Bauer, F. E., Adrian, T. E., Christofides, N. D., et al. (1986). Distribution and molecular heterogeneity of galanin in human, pig, guinea pig, and rat gastrointestinal tracts. Gastroenterology 91, 877–883.CrossRefGoogle ScholarPubMed
Benya, R. V., Marrero, J. A., Ostrovskiy, D. A., Koutsouris, A., and Hecht, G. (1999). Human colonic epithelial cells express galanin-1 receptors, which when activated cause Cl- secretion. Am. J. Physiol. 276, G64–G72.Google ScholarPubMed
Berglund, J. J., Riegler, M., Zolotarevsky, Y., Wenzl, E., and Turner, J. R. (2001). Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)-glucose cotransport. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1487–G1493.CrossRefGoogle ScholarPubMed
Black, D. S. and Bliska, J. B. (1997). Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO. J. 16, 2730–2744.CrossRefGoogle Scholar
Blikslager, A. T., Roberts, M. C., Rhoads, J. M., and Argenzio, R. A. (1997). Prostaglandins I2 and E2 have a synergistic role in rescuing epithelial barrier function in porcine ileum. J. Clin. Invest. 100, 1928–1933.CrossRefGoogle ScholarPubMed
Blikslager, A. T., Roberts, M. C., and Argenzio, R. A. (1999). Prostaglandin-induced recovery of barrier function in porcine ileum is triggered by chloride secretion. Am. J. Physiol. 276, G28–G36.Google ScholarPubMed
Blikslager, A. T., Pell, S. M., and Young, K. M. (2001). PGE2 triggers recovery of transmucosal resistance via EP receptor cross talk in porcine ischemia-injured ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G375–G381.CrossRefGoogle ScholarPubMed
Boland, A. and Cornelis, G. R. (1998). Role of YopP in suppression of tumor necrosis factor alpha release by macrophages during Yersinia infection. Infect. Immun. 66, 1878–1884.Google ScholarPubMed
Borriello, S. P. (1998). Pathogenesis of Clostridium difficile infection. J. Antimicrob. Chemother. 41(Suppl C), 13–19.CrossRefGoogle ScholarPubMed
Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C. (1988). Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell. Biol. 4, 487–525.CrossRefGoogle ScholarPubMed
Campellone, K. G., Robbins, D., and Leong, J. M. (2004). EspFUxy2 is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7, 217–228.CrossRefGoogle ScholarPubMed
Canil, C., Rosenshine, I., Ruschkowski, S., et al. (1993). Enteropathogenic Escherichia coli decreases the transepithelial electrical resistance of polarized epithelial monolayers. Infect. Immun. 61, 2755–2762.Google ScholarPubMed
Chambers, F. G., Koshy, S. S., Saidi, R. F., et al. (1997). Bacteroides fragilis toxin exhibits polar activity on monolayers of human intestinal epithelial cells (T84 cells) in vitro. Infect. Immun. 65, 3561–3570.Google ScholarPubMed
Chen, M. L., Pothoulakis, C., and LaMont, J. T. (2002). Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A. J. Biol. Chem. 277, 4247–4254.CrossRefGoogle ScholarPubMed
Citi, S., Sabanay, H., Jakes, R., Geiger, B., and Kendrick-Jones, J. (1988). Cingulin, a new peripheral component of tight junctions. Nature 333, 272–276.CrossRefGoogle ScholarPubMed
Clark, M. A., Hirst, B. H., and Jepson, M. A. (1998). M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect. Immun. 66, 1237–1243.Google ScholarPubMed
Claude, P. and Goodenough, D. A. (1973). Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell. Biol. 58, 390–400.CrossRefGoogle ScholarPubMed
Cohen, C. J., Shieh, J. T., Pickles, R. J., et al. (2001). The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. U. S. A. 98, 15 191–15 196.CrossRefGoogle ScholarPubMed
Colegio, O. R., Itallie, C. M., McCrea, H. J., Rahner, C., and Anderson, J. M. (2002). Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am. J. Physiol. Cell. Physiol. 283, C142–C147.CrossRefGoogle ScholarPubMed
Colegio, O. R., Itallie, C., Rahner, C., and Anderson, J. M. (2003). Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am. J. Physiol. Cell. Physiol. 284, C1346–C1354.CrossRefGoogle Scholar
Collington, G. K., Booth, I. W., and Knutton, S. (1998). Rapid modulation of electrolyte transport in Caco-2 cell monolayers by enteropathogenic Escherichia coli (EPEC) infection. Gut 42, 200–207.CrossRefGoogle ScholarPubMed
Cox, D. S., Gao, H., Raje, S., Scott, K. R., and Eddington, N. D. (2001). Enhancing the permeation of marker compounds and enaminone anticonvulsants across Caco-2 monolayers by modulating tight junctions using zonula occludens toxin. Eur. J. Pharm. Biopharm. 52, 145–150.CrossRefGoogle ScholarPubMed
Crane, J. K., McNamara, B. P., and Donnenberg, M. S. (2001). Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell. Microbiol. 3, 197–211.CrossRefGoogle ScholarPubMed
Dahan, S., Dalmasso, G., Imbert, V., et al. (2003). Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect. Immun. 71, 766–773.CrossRefGoogle ScholarPubMed
Dean, P. and Kenny, B. (2004). Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol. Microbiol. 54, 665–675.CrossRefGoogle Scholar
Dean, P., Maresca, M., and Kenny, B. (2005). EPEC's weapons of mass subversion. Curr. Opin. Microbiol. 8, 28–34.CrossRefGoogle ScholarPubMed
Deibel, C., Kramer, S., Chakraborty, T., and Ebel, F. (1998). EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein. Mol. Microbiol. 28, 463–474.CrossRefGoogle ScholarPubMed
DeVinney, R., Knoechel, D. G., and Finlay, B. B. (1999). Enteropathogenic Escherichia coli: cellular harassment. Curr. Opin. Microbiol. 2, 83–88.CrossRefGoogle ScholarPubMed
DeVinney, R., Stein, M., Reinscheid, D., et al. (1999). Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun. 67, 2389–2398.Google Scholar
DeVinney, R., Puente, J. L., Gauthier, A., Goosney, D., and Finlay, B. B. (2001). Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol. Microbiol. 41, 1445–1458.CrossRefGoogle ScholarPubMed
Doganay, M. (2003). Listeriosis: clinical presentation. FEMS Immunol. Med. Microbiol. 35, 173–175.CrossRefGoogle ScholarPubMed
Donnenberg, M. S., Yu, J., and Kaper, J. B. (1993). A second chromosomal gene necessary for intimate attachment of enteropathogenic Escherichia coli to epithelial cells. J. Bacteriol. 175, 4670–4680.CrossRefGoogle ScholarPubMed
Ebnet, K., Schulz, C. U., Meyer Zu Brickwedde, M. K., Pendl, G. G., and Vestweber, D. (2000). Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 275, 27 979–27 988.Google ScholarPubMed
Eckmann, L., Stenson, W. F., Savidge, T. C., et al. (1997). Role of intestinal epithelial cells in the host secretory response to infection by invasive bacteria: bacterial entry induces epithelial prostaglandin h synthase-2 expression and prostaglandin E2 and F2alpha production. J. Clin. Invest. 100, 296–309.CrossRefGoogle ScholarPubMed
Fanning, A. S., Jameson, B. J., Jesaitis, L. A., and Anderson, J. M. (1998). The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273, 29 745–29 753.CrossRefGoogle ScholarPubMed
Farshori, P. and Kachar, B. (1999). Redistribution and phosphorylation of occludin during opening and resealing of tight junctions in cultured epithelial cells. J. Membr. Biol. 170, 147–156.CrossRefGoogle ScholarPubMed
Fasano, A. and Uzzau, S. (1997). Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J. Clin. Invest. 99, 1158–1164.CrossRefGoogle Scholar
Fasano, A., Baudry, B., Pumplin, D. W., et al. (1991). Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl. Acad. Sci. U. S. A. 88, 5242–5246.CrossRefGoogle ScholarPubMed
Fish, S. M., Proujansky, R., and Reenstra, W. W. (1999). Synergistic effects of interferon gamma and tumour necrosis factor alpha on T84 cell function. Gut 45, 191–198.CrossRefGoogle ScholarPubMed
Fivaz, M. and Goot, F. G. (1999). The tip of a molecular syringe. Trends Microbiol 7, 341–343.CrossRefGoogle ScholarPubMed
Frankel, G., Lider, O., Hershkoviz, R., et al. (1996). The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. J. Biol. Chem. 271, 20 359–20 364.CrossRefGoogle ScholarPubMed
Frankel, G., Phillips, A. D., Rosenshine, I., et al. (1998). Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol. Microbiol. 30, 911–921.CrossRefGoogle ScholarPubMed
Freeman, N. L., Zurawski, D. V., Chowrashi, P., et al. (2000). Interaction of the enteropathogenic Escherichia coli protein, translocated intimin receptor (Tir), with focal adhesion proteins. Cell. Motil. Cytoskeleton 47, 307–318.3.0.CO;2-Q>CrossRefGoogle Scholar
Fujibe, M., Chiba, H., Kojima, T., et al. (2004). Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. Exp. Cell Res. 295, 36–47.CrossRefGoogle ScholarPubMed
Furuse, M., Hirase, T., Itoh, M., et al. (1993). Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123, 1777–1788.CrossRefGoogle ScholarPubMed
Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., and Tsukita, S. (1998). Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141, 1539–1550.CrossRefGoogle ScholarPubMed
Furuse, M., Sasaki, H., Fujimoto, K., and Tsukita, S. (1998). A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell. Biol. 143, 391–401.CrossRefGoogle ScholarPubMed
Gaillard, J. L., Berche, P., Frehel, C., Gouin, E., and Cossart, P. (1991). Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65, 1127–1141.CrossRefGoogle ScholarPubMed
Girardin, S. E., Boneca, I. G., Carneiro, L. A., et al. (2003). Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587.CrossRefGoogle ScholarPubMed
Gogarten, W., Kockerling, A., Fromm, M., Riecken, E. O., and Schulzke, J. D. (1994). Effect of acute Yersinia enterocolitica infection on intestinal barrier function in the mouse. Scand. J. Gastroenterol. 29, 814–819.CrossRefGoogle ScholarPubMed
Gookin, J. L., Duckett, L. L., Armstrong, M. U., et al. (2004). Nitric oxide synthase stimulates prostaglandin synthesis and barrier function in C. parvum-infected porcine ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G571–G581.CrossRefGoogle Scholar
Goosney, D. L., DeVinney, R., Pfuetzner, R. A., et al. (2000). Enteropathogenic E. coli translocated intimin receptor, Tir, interacts directly with alpha-actinin. Curr. Biol. 10, 735–738.CrossRefGoogle ScholarPubMed
Goosney, D. L., DeVinney, R., and Finlay, B. B. (2001). Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69, 3315–3322.CrossRefGoogle ScholarPubMed
Grosdent, N., Maridonneau-Parini, I., Sory, M. P., and Cornelis, G. R. (2002). Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Infect. Immun. 70, 4165–4176.CrossRefGoogle ScholarPubMed
Gruenheid, S., DeVinney, R., Bladt, F., et al. (2001). Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cellsNat. Cell. Biol. 3, 856–859.CrossRefGoogle ScholarPubMed
Gumbiner, B. (1987). Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253, C749–C758.CrossRefGoogle ScholarPubMed
Gumbiner, B. (1993). Breaking through the tight junction barrier. J. Cell Biol. 123, 1631–1633.CrossRefGoogle ScholarPubMed
Gumbiner, B., Lowenkopf, T., and Apatira, D. (1991). Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc. Natl. Acad. Sci. U. S. A. 88, 3460–3464.CrossRefGoogle ScholarPubMed
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R., and Galan, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826.CrossRefGoogle ScholarPubMed
Haskins, J., Gu, L., Wittchen, E. S., Hibbard, J., and Stevenson, B. R. (1998). ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell. Biol. 141, 199–208.CrossRefGoogle ScholarPubMed
Hauck, C. R. (2002). Cell adhesion receptors: signaling capacity and exploitation by bacterial pathogens. Med. Microbiol. Immunol. (Berl.) 191, 55–62.CrossRefGoogle ScholarPubMed
Hauf, N. and Chakraborty, T. (2003). Suppression of NF-kappa B activation and proinflammatory cytokine expression by Shiga toxin-producing Escherichia coli. J. Immunol. 170, 2074–2082.CrossRefGoogle ScholarPubMed
Hayashi, H., Szaszi, K., Coady-Osberg, N., et al. (2004). Inhibition and redistribution of NHE3, the apical Na+/H+ exchanger, by Clostridium difficile toxin B. J. Gen. Physiol. 123, 491–504.CrossRefGoogle ScholarPubMed
Hayward, R. D. and Koronakis, V. (1999). Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO. J. 18, 4926–4934.CrossRefGoogle ScholarPubMed
Hecht, G. (2001). Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1–7.CrossRefGoogle ScholarPubMed
Hecht, G. and Koutsouris, A. (1999). Enteropathogenic E. coli attenuates secretagogue-induced net intestinal ion transport but not Cl− secretion. Am. J. Physiol. 276, G781–G788.Google Scholar
Hecht, G., Pothoulakis, C., LaMont, J. T., and Madara, J. L. (1988). Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82, 1516–1524.CrossRefGoogle ScholarPubMed
Hecht, G., Koutsouris, A., Pothoulakis, C., LaMont, J. T., and Madara, J. L. (1992). Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology 102, 416–423.CrossRefGoogle ScholarPubMed
Hecht, G., Pestic, L., Nikcevic, G., et al. (1996). Expression of the catalytic domain of myosin light chain kinase increases paracellular permeability. Am. J. Physiol. 271, C1678–C1684.CrossRefGoogle ScholarPubMed
Hecht, G., Marrero, J. A., Danilkovich, A., et al. (1999). Pathogenic Escherichia coli increase Cl− secretion from intestinal epithelia by upregulating galanin-1 receptor expression. J. Clin. Invest. 104, 253–262.CrossRefGoogle ScholarPubMed
Hecht, G., Hodges, K., Gill, R. K., et al. (2004). Differential regulation of Na+/H+ exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G370–G378.CrossRefGoogle ScholarPubMed
Heczko, U., Carthy, C. M., O'Brien, B. A., and Finlay, B. B. (2001). Decreased apoptosis in the ileum and ileal Peyer's patches: a feature after infection with rabbit enteropathogenic Escherichia coli O103. Infect. Immun. 69, 4580–4589.CrossRefGoogle ScholarPubMed
Heiskala, M., Peterson, P. A., and Yang, Y. (2001). The roles of claudin superfamily proteins in paracellular transport. Traffic 2, 93–98.CrossRefGoogle ScholarPubMed
Hermiston, M. L. and Gordon, J. I. (1995). In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J. Cell Biol. 129, 489–506.CrossRefGoogle ScholarPubMed
Hersh, D., Monack, D. M., Smith, M. R., et al. (1999). The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. U. S. A. 96, 2396–2401.CrossRefGoogle ScholarPubMed
Inai, T., Kobayashi, J., and Shibata, Y. (1999). Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur. J. Cell Biol. 78, 849–855.CrossRefGoogle ScholarPubMed
Isberg, R. R. and Leong, J. M. (1990). Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–871.CrossRefGoogle Scholar
Isberg, R. R., Voorhis, D. L., and Falkow, S. (1987). Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50, 769–778.CrossRefGoogle ScholarPubMed
Ishizaki, T., Chiba, H., Kojima, T., et al. (2003). Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood–brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp. Cell Res. 290, 275–288.CrossRefGoogle ScholarPubMed
Ismaili, A., Philpott, D. J., Dytoc, M. T., and Sherman, P. M. (1995). Signal transduction responses following adhesion of verocytotoxin-producing Escherichia coli. Infect. Immun. 63, 3316–3326.Google ScholarPubMed
Itoh, M., Morita, K., and Tsukita, S. (1999). Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J. Biol. Chem. 274, 5981–5986.CrossRefGoogle ScholarPubMed
Itoh, M., Sasaki, H., Furuse, M., et al. (2001). Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell. Biol. 154, 491–497.CrossRefGoogle ScholarPubMed
Jesaitis, L. A. and Goodenough, D. A. (1994). Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J. Cell Biol. 124, 949–961.CrossRefGoogle ScholarPubMed
Juliano, R. L. (2002). Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol. 42, 283–323.CrossRefGoogle ScholarPubMed
Kalman, D., Weiner, O. D., Goosney, D. L., et al. (1999). Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nat. Cell Biol. 1, 389–391.CrossRefGoogle ScholarPubMed
Katsoulis, S., Clemens, A., Morys-Wortmann, C., et al. (1996). Human galanin modulates human colonic motility in vitro: characterization of structural requirements. Scand. J. Gastroenterol. 31, 446–451.CrossRefGoogle ScholarPubMed
Keely, S. J. and Barrett, K. E. (2000). Regulation of chloride secretion: novel pathways and messengers. Ann. N. Y. Acad. Sci. 915, 67–76.CrossRefGoogle ScholarPubMed
Kenny, B. (1999). Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol. Microbiol. 31, 1229–1241.CrossRefGoogle ScholarPubMed
Kenny, B. (2001). The enterohaemorrhagic Escherichia coli (serotype O157:H7) Tir molecule is not functionally interchangeable for its enteropathogenic E. coli (serotype O127:H6) homologue. Cell. Microbiol. 3, 499–510.CrossRefGoogle Scholar
Kenny, B. and Jepson, M. (2000). Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell. Microbiol. 2, 579–590.CrossRefGoogle ScholarPubMed
Kenny, B., Abe, A., Stein, M., and Finlay, B. B. (1997). Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract. Infect. Immun. 65, 2606–2612.Google ScholarPubMed
Kenny, B., DeVinney, R., Stein, M., et al. (1997). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520.CrossRefGoogle ScholarPubMed
Kenny, B., Ellis, S., Leard, A. D., et al. (2002). Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol. Microbiol. 44, 1095–1107.CrossRefGoogle ScholarPubMed
Knutton, S., Baldwin, T., Williams, P. H., and McNeish, A. S. (1989). Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 57, 1290–1298.Google ScholarPubMed
Knutton, S., Rosenshine, I., Pallen, M. J., et al. (1998). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176.CrossRefGoogle ScholarPubMed
Kodama, T., Akeda, Y., Kono, G., et al. (2002). The EspB protein of enterohaemorrhagic Escherichia coli interacts directly with alpha-catenin. Cell. Microbiol. 4, 213–222.CrossRefGoogle ScholarPubMed
Laurent, F., Kagnoff, M. F., Savidge, T. C., Naciri, M., and Eckmann, L. (1998). Human intestinal epithelial cells respond to Cryptosporidium parvum infection with increased prostaglandin H synthase 2 expression and prostaglandin E2 and F2alpha production. Infect. Immun. 66, 1787–1790.Google ScholarPubMed
Lecuit, M., Hurme, R., Pizarro-Cerda, J., et al. (2000). A role for alpha-and beta-catenins in bacterial uptake. Proc. Natl. Acad. Sci. U. S. A. 97, 10 008–10 013.CrossRefGoogle ScholarPubMed
Little, D., Dean, R. A., Young, K. M., et al. (2003). PI3K signaling is required for prostaglandin-induced mucosal recovery in ischemia-injured porcine ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G46–G56.CrossRefGoogle ScholarPubMed
Liu, T. S., Musch, M. W., Sugi, K., et al. (2003). Protective role of HSP72 against Clostridium difficile toxin A-induced intestinal epithelial cell dysfunction. Am. J. Physiol. Cell Physiol. 284, C1073–C1082.CrossRefGoogle ScholarPubMed
Lucas, M. L. (2001). A reconsideration of the evidence for Escherichia coli STa (heat stable) enterotoxin-driven fluid secretion: a new view of STa action and a new paradigm for fluid absorption. J. Appl. Microbiol. 90, 7–26.CrossRefGoogle Scholar
Ma, T. Y., Iwamoto, G. K., Hoa, N. T., et al. (2004). TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G367–G376.CrossRefGoogle ScholarPubMed
Ma, T. Y., Boivin, M. A., Ye, D., Pedram, A., and Said, H. M. (2005). Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G422–G430.CrossRefGoogle ScholarPubMed
Madara, J. L. (1988). Tight junction dynamics: is paracellular transport regulated?Cell 53, 497–498.CrossRefGoogle ScholarPubMed
Madara, J. L. and Stafford, J. (1989). Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J. Clin. Invest. 83, 724–727.CrossRefGoogle ScholarPubMed
Madara, J. L., Barenberg, D., and Carlson, S. (1986). Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J. Cell. Biol. 102, 2125–2136.CrossRefGoogle ScholarPubMed
Madara, J. L., Moore, R., and Carlson, S. (1987). Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am. J. Physiol. 253, C854–C861.CrossRefGoogle ScholarPubMed
Manjarrez-Hernandez, H. A., Amess, B., Sellers, L., et al. (1991). Purification of a 20 kDa phosphoprotein from epithelial cells and identification as a myosin light chain: phosphorylation induced by enteropathogenic Escherichia coli and phorbol ester. FEBS Lett. 292, 121–127.Google ScholarPubMed
Mann, E. A., Jump, M. L., Wu, J., Yee, E., and Giannella, R. A. (1997). Mice lacking the guanylyl cyclase C receptor are resistant to STa-induced intestinal secretion. Biochem. Biophys. Res. Commun. 239, 463–466.CrossRefGoogle ScholarPubMed
Marano, C. W., Lewis, S. A., Garulacan, L. A., Soler, A. P., and Mullin, J. M. (1998). Tumor necrosis factor-alpha increases sodium and chloride conductance across the tight junction of CACO-2 BBE, a human intestinal epithelial cell line. J. Membr. Biol. 161, 263–274.CrossRefGoogle ScholarPubMed
Martin-Padura, I., Lostaglio, S., Schneemann, M., et al. (1998). Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142, 117–127.CrossRefGoogle ScholarPubMed
Matkowskyj, K. A., Danilkovich, A., Marrero, J., et al. (2000). Galanin-1 receptor up-regulation mediates the excess colonic fluid production caused by infection with enteric pathogens. Nat. Med. 6, 1048–1051.CrossRefGoogle ScholarPubMed
Matsuzawa, T., Kuwae, A., Yoshida, S., Sasakawa, C., and Abe, A. (2004). Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J. 23, 3570–3582.CrossRefGoogle ScholarPubMed
McCarthy, K. M., Skare, I. B., Stankewich, M. C., et al. (1996). Occludin is a functional component of the tight junction. J. Cell Sci. 109 (Pt 9), 2287–2298.Google Scholar
McCarthy, K. M., Francis, S. A., McCormack, J. M., et al. (2000). Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells. J. Cell. Sci. 113 (Pt 19), 3387–3398.Google Scholar
McClane, B. A. (1996). An overview of Clostridium perfringens enterotoxin. Toxicon 34, 1335–1343.CrossRefGoogle ScholarPubMed
McCormick, B. A., Parkos, C. A., Colgan, S. P., Carnes, D. K., and Madara, J. L. (1998). Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J. Immunol. 160, 455–466.Google ScholarPubMed
McDaniel, T. K. and Kaper, J. B. (1997). A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol. Microbiol. 23, 399–407.CrossRefGoogle ScholarPubMed
McGee, K., Holmfeldt, P., and Fallman, M. (2003). Microtubule-dependent regulation of Rho GTPases during internalisation of Yersinia pseudotuberculosis. FEBS Lett. 533, 35–41.CrossRefGoogle ScholarPubMed
McNamara, B. P. and Donnenberg, M. S. (1998). A novel proline-rich protein, EspF, is secreted from enteropathogenic Escherichia coli via the type III export pathway. FEMS Microbiol. Lett. 166, 71–78.CrossRefGoogle ScholarPubMed
McNamara, B. P., Koutsouris, A., O'Connell, C. B., et al. (2001). Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107, 621–629.CrossRefGoogle ScholarPubMed
Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M., and Cossart, P. (1996). E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932.CrossRefGoogle ScholarPubMed
Miller, V. L. and Falkow, S. (1988). Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect. Immun. 56, 1242–1248.Google ScholarPubMed
Mills, S. D., Boland, A., Sory, M. P., et al. (1997). Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc. Natl. Acad. Sci. U. S. A. 94, 12 638–12 643.CrossRefGoogle ScholarPubMed
Moeser, A. J., Haskell, M. M., Shifflett, D. E., et al. (2004). ClC-2 chloride secretion mediates prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum. Gastroenterology 127, 802–815.CrossRefGoogle ScholarPubMed
Molina, N. C. and Peterson, J. W. (1980). Cholera toxin-like toxin released by Salmonella species in the presence of mitomycin C. Infect. Immun. 30, 224–230.Google ScholarPubMed
Monack, D. M., Mecsas, J., Ghori, N., and Falkow, S. (1997). Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc. Natl. Acad. Sci. U. S. A. 94, 10 385–10 390.CrossRefGoogle ScholarPubMed
Morita, K., Sasaki, H., Fujimoto, K., Furuse, M., and Tsukita, S. (1999). Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J. Cell Biol. 145, 579–588.CrossRefGoogle ScholarPubMed
Mounier, J., Vasselon, T., Hellio, R., Lesourd, M., and Sansonetti, P. J. (1992). Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole. Infect. Immun. 60, 237–248.Google ScholarPubMed
Mrsny, R. J., Gewirtz, A. T., Siccardi, D., et al. (2004). Identification of hepoxilin A3 in inflammatory events: a required role in neutrophil migration across intestinal epithelia. Proc. Natl. Acad. Sci. U. S. A. 101, 7421–7426.CrossRefGoogle ScholarPubMed
Muza-Moons, M. M., Koutsouris, A., and Hecht, G. (2003). Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences. Infect. Immun. 71, 7069–7078.CrossRefGoogle ScholarPubMed
Muza-Moons, M. M., Schneeberger, E. E., and Hecht, G. A. (2004). Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell. Microbiol. 6, 783–793.CrossRefGoogle ScholarPubMed
Nagai, T., Abe, A., and Sasakawa, C. (2005). Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J. Biol. Chem. 280, 2998–3011.CrossRefGoogle ScholarPubMed
Nataro, J. P. and Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201.Google ScholarPubMed
Nhieu, G. T. and Sansonetti, P. J. (1999). Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2, 51–55.CrossRefGoogle ScholarPubMed
Nougayrede, J. P. and Donnenberg, M. S. (2004). Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell. Microbiol. 6, 1097–1111.CrossRefGoogle ScholarPubMed
Nougayrede, J. P., Fernandes, P. J., and Donnenberg, M. S. (2003). Adhesion of enteropathogenic Escherichia coli to host cells. Cell. Microbiol. 5, 359–372.CrossRefGoogle ScholarPubMed
Nusrat, A., Giry, M., Turner, J. R., et al. (1995). Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc. Natl. Acad. Sci. U. S. A. 92, 10 629–10 633.CrossRefGoogle ScholarPubMed
Nusrat, A., Eichel-Streiber, C., Turner, J. R., et al. (2001). Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun. 69, 1329–1336.CrossRefGoogle ScholarPubMed
Nybom, P. and Magnusson, K. E. (1996). Modulation of the junctional integrity by low or high concentrations of cytochalasin B and dihydrocytochalasin B is associated with distinct changes in F-actin and ZO-1. Biosci. Rep. 16, 313–326.CrossRefGoogle ScholarPubMed
Obiso, R. J. Jr, Lyerly, D. M., Tassell, R. L., and Wilkins, T. D. (1995). Proteolytic activity of the Bacteroides fragilis enterotoxin causes fluid secretion and intestinal damage in vivo. Infect. Immun. 63, 3820–3826.Google ScholarPubMed
Palmer, L. E., Hobbie, S., Galan, J. E., and Bliska, J. B. (1998). YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-alpha production and downregulation of the MAP kinases p38 and JNK. Mol. Microbiol. 27, 953–965.CrossRefGoogle ScholarPubMed
Pappenheimer, J. R. and Reiss, K. Z. (1987). Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J. Membr. Biol. 100, 123–136.CrossRefGoogle ScholarPubMed
Perdomo, J. J., Gounon, P., and Sansonetti, P. J. (1994). Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayer by Shigella flexneri. J. Clin. Invest. 93, 633–643.CrossRefGoogle ScholarPubMed
Perna, N. T., Mayhew, G. F., Posfai, G., et al. (1998). Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 66, 3810–3817.Google ScholarPubMed
Persson, C., Carballeira, N., Wolf-Watz, H., and Fallman, M. (1997). The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16, 2307–2318.CrossRefGoogle ScholarPubMed
Philpott, D. J., McKay, D. M., Sherman, P. M., and Perdue, M. H. (1996). Infection of T84 cells with enteropathogenic Escherichia coli alters barrier and transport functions. Am. J. Physiol. 270, G634–G645.Google ScholarPubMed
Philpott, D. J., McKay, D. M., Mak, W., Perdue, M. H., and Sherman, P. M. (1998). Signal transduction pathways involved in enterohemorrhagic Escherichia coli-induced alterations in T84 epithelial permeability. Infect. Immun. 66, 1680–1687.Google ScholarPubMed
Pothoulakis, C. (2000). Effects of Clostridium difficile toxins on epithelial cell barrier. Ann. N. Y. Acad. Sci. 915, 347–356.CrossRefGoogle ScholarPubMed
Rahner, C., Mitic, L. L., and Anderson, J. M. (2001). Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120, 411–422.CrossRefGoogle ScholarPubMed
Ren, Y., Li, R., Zheng, Y., and Busch, H. (1998). Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J. Biol. Chem. 273, 34 954–34 960.CrossRefGoogle ScholarPubMed
Rodriguez, P., Heyman, M., Candalh, C., Blaton, M. A., and Bouchaud, C. (1995). Tumour necrosis factor-alpha induces morphological and functional alterations of intestinal HT29 cl.19A cell monolayers. Cytokine 7, 441–448.CrossRefGoogle ScholarPubMed
Ruckdeschel, K., Machold, J., Roggenkamp, A., et al. (1997). Yersinia enterocolitica promotes deactivation of macrophage mitogen-activated protein kinases extracellular signal-regulated kinase-1/2, p38, and c-Jun NH2-terminal kinase: correlation with its inhibitory effect on tumor necrosis factor-alpha production. J. Biol. Chem. 272, 15 920–15 927.CrossRefGoogle ScholarPubMed
Ruckdeschel, K., Harb, S., Roggenkamp, A., et al. (1998). Yersinia enterocolitica impairs activation of transcription factor NF-kappaB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. J. Exp. Med. 187, 1069–1079.CrossRefGoogle ScholarPubMed
Ruiz-Palacios, G. M., Torres, J., Torres, N. I., et al. (1983). Cholera-like enterotoxin produced by Campylobacter jejuni: characterisation and clinical significance. Lancet 2, 250–253.CrossRefGoogle ScholarPubMed
Saitou, M., Fujimoto, K., Doi, Y., et al. (1998). Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell. Biol. 141, 397–408.CrossRefGoogle ScholarPubMed
Saitou, M., Furuse, M., Sasaki, H., et al. (2000). Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell. 11, 4131–4142.CrossRefGoogle ScholarPubMed
Sakaguchi, T., Kohler, H., Gu, X., McCormick, B. A., and Reinecker, H. C. (2002). Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell. Microbiol. 4, 367–381.CrossRefGoogle ScholarPubMed
Sakakibara, A., Furuse, M., Saitou, M., Ando-Akatsuka, Y., and Tsukita, S. (1997). Possible involvement of phosphorylation of occludin in tight junction formation. J. Cell. Biol. 137, 1393–1401.CrossRefGoogle ScholarPubMed
Sanger, J. M., Chang, R., Ashton, F., Kaper, J. B., and Sanger, J. W. (1996). Novel form of actin-based motility transports bacteria on the surfaces of infected cells. Cell Motil. Cytoskeleton 34, 279–287.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Savkovic, S. D., Koutsouris, A., and Hecht, G. (1996). Attachment of a noninvasive enteric pathogen, enteropathogenic Escherichia coli, to cultured human intestinal epithelial monolayers induces transmigration of neutrophils. Infect. Immun. 64, 4480–4487.Google ScholarPubMed
Savkovic, S. D., Koutsouris, A., and Hecht, G. (1997). Activation of NF-kappaB in intestinal epithelial cells by enteropathogenic Escherichia coli. Am. J. Physiol. 273, C1160–C1167.CrossRefGoogle ScholarPubMed
Savkovic, S. D., Ramaswamy, A., Koutsouris, A., and Hecht, G. (2001). EPEC-activated ERK1/2 participate in inflammatory response but not tight junction barrier disruption. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G890–G898.CrossRefGoogle Scholar
Savkovic, S. D., Villanueva, J., Turner, J. R., Matkowskyj, K. A., and Hecht, G. (2005). Mouse model of enteropathogenic Escherichia coli infection. Infect. Immun. 73, 1161–1170.CrossRefGoogle ScholarPubMed
Schesser, K., Spiik, A. K., Dukuzumuremyi, J. M., et al. (1998). The yopJ locus is required for Yersinia-mediated inhibition of NF-kappaB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28, 1067–1079.CrossRefGoogle ScholarPubMed
Schmitz, H., Fromm, M., Bentzel, C. J., et al. (1999). Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J. Cell. Sci. 112 (Pt 1), 137–146.Google Scholar
Schneeberger, E. E. and Lynch, R. D. (2004). The tight junction: a multifunctional complex. Am. J. Physiol. Cell Physiol. 286, C1213–C1228.CrossRefGoogle ScholarPubMed
Schulte, R., Wattiau, P., Hartland, E. L., Robins-Browne, R. M., and Cornelis, G. R. (1996). Differential secretion of interleukin-8 by human epithelial cell lines upon entry of virulent or nonvirulent Yersinia enterocolitica. Infect. Immun. 64, 2106–2113.Google ScholarPubMed
Schulzke, J. D., Gitter, A. H., Mankertz, J., et al. (2005). Epithelial transport and barrier function in occludin-deficient mice. Biochim. Biophys. Acta 1669, 34–42.CrossRefGoogle ScholarPubMed
Sharma, R., Tesfay, S., Tomson, F. L., et al. (2005). A type III secretion-independent, non-flagellin molecule contributes to enteropathogenic E. coli-mediated inflammatory response. Gastroenterology 128 (Supp.e 2), A-67.Google Scholar
Shaw, R. K., Daniell, S., Ebel, F., Frankel, G., and Knutton, S. (2001). EspA filament-mediated protein translocation into red blood cells. Cell. Microbiol. 3, 213–222.CrossRefGoogle ScholarPubMed
Shifflett, D. E., Bottone, F. G. Jr, Young, K. M., et al. (2004). Neutrophils augment recovery of porcine ischemia-injured ileal mucosa by an IL-1beta- and COX-2-dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G50–G57.CrossRefGoogle ScholarPubMed
Shifflett, D. E., Jones, S. L., Moeser, A. J., and Blikslager, A. T. (2004). Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G906–G913.CrossRefGoogle ScholarPubMed
Shifflett, D. E., Clayburgh, D. R., Koutsouris, A., Turner, J. R., and Hecht, G. A. (2005). Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab. Invest. 85, 1308–1324.CrossRefGoogle ScholarPubMed
Shull, G. E., Miller, M. L., and Schultheis, P. J. (2000). Lessons from genetically engineered animal models. VIII: absorption and secretion of ions in the gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G185–G190.CrossRefGoogle ScholarPubMed
Silva, M., Song, C., Nadeau, W. J., Matthews, J. B., and McCormick, B. A. (2004). Salmonella typhimurium SipA-induced neutrophil transepithelial migration: involvement of a PKC-alpha-dependent signal transduction pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G1024–G1031.CrossRefGoogle ScholarPubMed
Simon, D. B., Lu, Y., Choate, K. A., et al. (1999). Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106.CrossRefGoogle ScholarPubMed
Simonovic, I., Rosenberg, J., Koutsouris, A., and Hecht, G. (2000). Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol. 2, 305–315.CrossRefGoogle ScholarPubMed
Sinclair, J. F. and O'Brien, A. D. (2002). Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277, 2876–2885.CrossRefGoogle ScholarPubMed
Sonoda, N., Furuse, M., Sasaki, H., et al. (1999). Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J. Cell Biol. 147, 195–204.CrossRefGoogle ScholarPubMed
Spitz, J., Yuhan, R., Koutsouris, A., et al. (1995). Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am. J. Physiol. 268, G374–G379.Google ScholarPubMed
Staddon, J. M., Herrenknecht, K., Smales, C., and Rubin, L. L. (1995). Evidence that tyrosine phosphorylation may increase tight junction permeability. J. Cell Sci. 108 (Pt 2), 609–619.Google Scholar
Stenson, W. F., Zhang, Z., Riehl, T., and Stanley, S. L. Jr (2001). Amebic infection in the human colon induces cyclooxygenase-2. Infect. Immun. 69, 3382–3388.CrossRefGoogle ScholarPubMed
Stevenson, B. R., Siliciano, J. D., Mooseker, M. S., and Goodenough, D. A. (1986). Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103, 755–766.CrossRefGoogle Scholar
Stevenson, B. R., Anderson, J. M., Goodenough, D. A., and Mooseker, M. S. (1988). Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. J. Cell Biol. 107, 2401–2408.CrossRefGoogle ScholarPubMed
Stevenson, B. R., Anderson, J. M., Braun, I. D., and Mooseker, M. S. (1989). Phosphorylation of the tight-junction protein ZO-1 in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance. Biochem. J. 263, 597–599.CrossRefGoogle ScholarPubMed
Sugi, K., Musch, M. W., Field, M., and Chang, E. B. (2001). Inhibition of Na+,K+-ATPase by interferon gamma down-regulates intestinal epithelial transport and barrier function. Gastroenterology 120, 1393–1403.CrossRefGoogle ScholarPubMed
Tacket, C. O., Sztein, M. B., Losonsky, G., et al. (2000). Role of EspB in experimental human enteropathogenic Escherichia coli infection. Infect. Immun. 68, 3689–3695.CrossRefGoogle ScholarPubMed
Tafazoli, F., Holmstrom, A., Forsberg, A., and Magnusson, K. E. (2000). Apically exposed, tight junction-associated beta1-integrins allow binding and YopE-mediated perturbation of epithelial barriers by wild-type Yersinia bacteria. Infect. Immun. 68, 5335–5343.CrossRefGoogle ScholarPubMed
Taylor, K. A., O'Connell, C. B., Luther, P. W., and Donnenberg, M. S. (1998). The EspB protein of enteropathogenic Escherichia coli is targeted to the cytoplasm of infected HeLa cells. Infect. Immun. 66, 5501–5507.Google ScholarPubMed
Theriot, J. A., Mitchison, T. J., Tilney, L. G., and Portnoy, D. A. (1992). The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257–260.CrossRefGoogle ScholarPubMed
Thirumalai, K., Kim, K. S., and Zychlinsky, A. (1997). IpaB, a Shigella flexneri invasin, colocalizes with interleukin-1 beta-converting enzyme in the cytoplasm of macrophages. Infect. Immun. 65, 787–793.Google ScholarPubMed
Tomson, F. L., Tesfay, S., Sharma, R., et al. (2005). A secreted effector of enteropathogenic E. coli has anti-inflammatory effects on host cells. Gastroenterology 128 (Suppl 2), A-664.Google Scholar
Tomson, F. L., Viswanathan, V. K., Kanack, K. J., et al. (2005). Enteropathogenic Escherichia coli EspG disrupts microtubules and in conjunction with Orf3 enhances perturbation of the tight junction barrier. Mol. Microbiol. 56, 447–464.CrossRefGoogle ScholarPubMed
Tran Van Nhieu, G., Caron, E., Hall, A., and Sansonetti, P. J. (1999). IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18, 3249–3262.CrossRefGoogle ScholarPubMed
Tsukamoto, T. and Nigam, S. K. (1999). Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am. J. Physiol. 276, F737–F750.Google ScholarPubMed
Tsukita, S., Furuse, M., and Itoh, M. (2001). Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell. Biol. 2, 285–293.CrossRefGoogle ScholarPubMed
Tu, X., Nisan, I., Yona, C., Hanski, E., and Rosenshine, I. (2003). EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol. Microbiol. 47, 595–606.CrossRefGoogle ScholarPubMed
Turner, J. R., Cohen, D. E., Mrsny, R. J., and Madara, J. L. (2000). Noninvasive in vivo analysis of human small intestinal paracellular absorption: regulation by Na+-glucose cotransport. Dig. Dis. Sci. 45, 2122–2126.CrossRefGoogle ScholarPubMed
Itallie, C.Balda, M. S., and Anderson, J. M. (1995). Epidermal growth factor induces tyrosine phosphorylation and reorganization of the tight junction protein ZO-1 in A431 cells. J. Cell. Sci. 108 (Pt 4), 1735–1742.Google Scholar
Itallie, C., Rahner, C., and Anderson, J. M. (2001). Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J. Clin. Invest. 107, 1319–1327.CrossRefGoogle ScholarPubMed
Viswanathan, V. K., Koutsouris, A., Lukic, S., et al. (2004). Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function. Infect. Immun. 72, 3218–3227.CrossRefGoogle ScholarPubMed
Viswanathan, V. K., Lukic, S., Koutsouris, A., et al. (2004). Cytokeratin 18 interacts with the enteropathogenic Escherichia coli secreted protein F (EspF) and is redistributed after infection. Cell. Microbiol. 6, 987–997.CrossRefGoogle ScholarPubMed
Wang, F., Graham, W. V., Wang, Y., et al. (2005). Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol. 166, 409–419.CrossRefGoogle ScholarPubMed
Wang, W. L., Lu, R. L., DiPierro, M., and Fasano, A. (2000). Zonula occludin toxin, a microtubule binding protein. World J. Gastroenterol. 6, 330–334.CrossRefGoogle ScholarPubMed
Watarai, M., Funato, S., and Sasakawa, C. (1996). Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183, 991–999.CrossRefGoogle ScholarPubMed
Wittchen, E. S., Haskins, J., and Stevenson, B. R. (1999). Protein interactions at the tight junction: actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J. Biol. Chem. 274, 35 179–35 185.CrossRefGoogle ScholarPubMed
Wong, V. (1997). Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am. J. Physiol. 273, C1859–C1867.CrossRefGoogle ScholarPubMed
Wu, S., Lim, K. C., Huang, J., Saidi, R. F., and Sears, C. L. (1998). Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. U. S. A. 95, 14 979–14 984.CrossRefGoogle ScholarPubMed
Wu, Z., Milton, D., Nybom, P., Sjo, A., and Magnusson, K. E. (1996). Vibrio cholerae hemagglutinin/protease (HA/protease) causes morphological changes in cultured epithelial cells and perturbs their paracellular barrier function. Microb. Pathog. 21, 111–123.CrossRefGoogle ScholarPubMed
Wu, Z., Nybom, P., and Magnusson, K. E. (2000). Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol. 2, 11–17.CrossRefGoogle ScholarPubMed
Yamauchi, K., Rai, T., Kobayashi, K., et al. (2004). Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc. Natl. Acad. Sci. U. S. A. 101, 4690–4694.CrossRefGoogle ScholarPubMed
Yip, C. K., Finlay, B. B., and Strynadka, N. C. (2005). Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nat. Struct. Mol. Biol. 12, 75–81.CrossRefGoogle ScholarPubMed
Yoo, J., Nichols, A., Mammen, J., et al. (2003). Bryostatin-1 enhances barrier function in T84 epithelia through PKC-dependent regulation of tight junction proteins. Am. J. Physiol. Cell Physiol. 285, C300–C309.CrossRefGoogle ScholarPubMed
Youakim, A. and Ahdieh, M. (1999). Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am. J. Physiol. 276, G1279–G1288.Google ScholarPubMed
Young, V. B., Falkow, S., and Schoolnik, G. K. (1992). The invasin protein of Yersinia enterocolitica: internalization of invasin-bearing bacteria by eukaryotic cells is associated with reorganization of the cytoskeleton. J. Cell Biol. 116, 197–207.CrossRefGoogle ScholarPubMed
Yu, J. and Kaper, J. B. (1992). Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 6, 411–417.CrossRefGoogle ScholarPubMed
Yuhan, R., Koutsouris, A., Savkovic, S. D., and Hecht, G. (1997). Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113, 1873–1882.CrossRefGoogle ScholarPubMed
Zhong, Y., Saitoh, T., Minase, T., et al. (1993). Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J. Cell Biol. 120, 477–483.CrossRefGoogle ScholarPubMed
Zhou, D., Mooseker, M. S., and Galan, J. E. (1999). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 2092–2095.CrossRefGoogle Scholar
Zhou, X., Giron, J. A., Torres, A. G., et al. (2003). Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infect. Immun. 71, 2120–2129.CrossRefGoogle ScholarPubMed
Zolotarevsky, Y., Hecht, G., Koutsouris, A., et al. (2002). A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 123, 163–172.CrossRefGoogle ScholarPubMed
Zumbihl, R., Aepfelbacher, M., Andor, A., et al. (1999). The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274, 29 289–29 293.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Interactions of enteric bacteria with the intestinal mucosa
    • By Samuel Tesfay, Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA, Donnie Edward Shifflett, Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA, Gail A. Hecht, Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Interactions of enteric bacteria with the intestinal mucosa
    • By Samuel Tesfay, Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA, Donnie Edward Shifflett, Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA, Gail A. Hecht, Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Interactions of enteric bacteria with the intestinal mucosa
    • By Samuel Tesfay, Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA, Donnie Edward Shifflett, Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA, Gail A. Hecht, Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, Chicago IL 60612-7323, USA
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.013
Available formats
×