Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T21:12:13.970Z Has data issue: false hasContentIssue false

6 - Radiative Process: Techniques and Applications

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuna, M. H., Connerney, J. E., Wasilewski, P., et al. (1998) Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor mission, Science, 279, 1676.Google Scholar
Acuna, M. H., Connerney, J. E., Ness, N. F., et al. (1999) Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment, Science, 284, 790.Google Scholar
Ajello, J. M. and Hord, C. W. (1973) Mariner 9 ultraviolet spectrometer experiment: morning terminator observations of Mars, Journal of Atmospheric Sciences, 30, 14951501.2.0.CO;2>CrossRefGoogle Scholar
Ajello, J.M., Hord, C. W., Barth, C. A., et al. (1973) Mariner 9 ultraviolet spectrometer experiment: afternoon terminator observations of Mars, Journal of Geophysical Research, 78, 42794290.Google Scholar
Akabane, T., Iwasaki, K., Saito, Y., and Narumi, Y. (1990) Blue clearing of Syrtis Major at the 1982 opposition, Journal of Geophysical Research, 95, 1464914655.Google Scholar
Alms, G. R., Burnham, A. K., and Flygare, W. H. (1975) Measurement of the dispersion in polarizability anisotropies, Journal of Chemical Physics, 63, 33213326.CrossRefGoogle Scholar
Asano, S., and Yamamoto, G. (1975) Light scattering by a spheroidal particle, Applied Optics 14, 2949.Google Scholar
Ayash, T., Gong, S., and Jia, C. Q. (2008) Implementing the delta-four-stream approximation for solar radiation computations in an atmosphere general circulation model, Journal of Atmospheric Sciences, 65, 2448.Google Scholar
Bailey, M. P., and Hallett, J. (2009) A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 28882899.Google Scholar
Bandfield, J. L., Wolff, M. J., Smith, M. D., et al. (2013) Radiometric comparison of Mars Climate Sounder and Thermal Emission spectrometer measurements, Icarus, 225, 2839.Google Scholar
Baratta, G. A. and Palumbo, M. E. (1998) Infrared optical constants of CO and CO2 thin icy films, J. Opt. Soc. Am. A, 15, 30763085.CrossRefGoogle Scholar
Barth, C. A., Hord, C. W., Stewart, A. I., et al. (1973) Mariner 9 ultraviolet spectrometer experiment: Seasonal variation of ozone on Mars, Science, 179, 795796.Google Scholar
Basu, S., Richardson, M. I., and Wilson, R. J. (2004) Simulation of the Martian dust cycle with the GFDL Mars GCM, Journal of Geophysical Research (Planets), 109, 11006.Google Scholar
Basu, S., Wilson, R. J., Richardson, M. I., and Ingersoll, A. (2006) Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM, Journal of Geophysical Research (Planets), 111, 09004.Google Scholar
Bell, J. F., Wolff, M. J., Malin, M. C., et al. (2009) Mars Reconnaissance Orbiter Mars Color Imager (MARCI): instrument description, calibration, and performance, Journal of Geophysical Research (Planets), 114, E08S92.Google Scholar
Benson, J. L., Bonev, B. P., James, P. B., et al. (2003) The seasonal behavior of water ice clouds in the Tharsis and Valles Marineris regions of Mars: Mars Orbiter Camera observations, Icarus, 16, 3452.CrossRefGoogle Scholar
Benson, J. L., Kass, D. M., Kleinböhl, A., et al. (2010) Mars’ south polar hood as observed by the Mars Climate Sounder, Journal of Geophysical Research (Planets), 115, 12015.Google Scholar
Berk, A., Bernstein, L. S., Anderson, G. P., et al. (1998) MODTRAN cloud and multiple scattering upgrades with application to AVIRIS, Remote Sens. Environ., 65, 367375.CrossRefGoogle Scholar
Bertaux, J.-L., Korablev, O., Perrier, S., et al. (2006) SPICAM on Mars Express: observing modes and overview of UV spectrometer data and scientific results, Journal of Geophysical Research (Planets) 111, E10S90.Google Scholar
Bertucci, C. (2003) Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations, Geophys. Res. Lett., 30. 10.1029/2002gl015713.Google Scholar
Betz, A. L., McLaren, R. A.,Johnson, M. A. and Sutton, E. C. (1977) Infrared heterodyne spectroscopy of CO2 in the atmosphere of Mars, Icarus, 30, 650662.Google Scholar
Bideau-Mehu, A., Guern, Y., Abjean, R., and Johannin-Gilles, A. (1973) Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region, Optics Communications, 9, 432434.CrossRefGoogle Scholar
Blamont, J. E., Chassefiere, E., Goutail, J. P., et al. (1991) Vertical profiles of dust and ozone in the Martian atmosphere deduced from solar occultation measurements, Planetary and Space Science, 39, 175187.Google Scholar
Bohren, C. F. and Huffman, D. R. (1983) Absorption and Scattering of Light by Small Particles, John Wiley, USA.Google Scholar
Bougher, S. W. and Dickinson, R. E. (1988) Mars mesosphere and thermosphere. I – Global mean heat budget and thermal structure, Journal of Geophysical Research, 93, 73257337.Google Scholar
Bougher, S. W., Dickinson, R. E., Roble, R. G. and Ridley, E. C. (1988) Mars thermospheric general circulation model – calculations for the arrival of PHOBOS at Mars, Geophysical Research Letters, 15, 15111514.Google Scholar
Bougher, S. W., Hunten, D. M., and Roble, R. G., (1994) CO2 cooling in terrestrial planet thermospheres, Journal of Geophysical Research, 99, 14609.Google Scholar
Bougher, S. W., Bell, J. M., Murphy, J. R., et al. (2006) Polar warming in the Mars thermosphere: seasonal variations owing to changing insolation and dust distributions, Geophysical Research Letters, 33, 02203.Google Scholar
Brault, J. and Testerman, L. (1972) Preliminary Edition of Kitt Peak Solar Atlas, unpublished.Google Scholar
Briggs, G. A., and Leovy, C. B. (1974) Mariner 9 observations of the Mars north polar hood, Bull. Am. Meteorol. Soc., 55, 278278.Google Scholar
Burch, D. E., Gryvnak, D. A., Patty, R. R., and Bartky, C. E. (1969)Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines, J. Opt. Soc. Am., 59, 267280.Google Scholar
Cantor, B. A. (2007) MOC observations of the 2001 Mars planet-encircling dust storm, Icarus, 186, 6096.Google Scholar
Chahine, M. T. (1972) A general relaxation method from inverse solution of the full radiative transfer equation. J. Atmos. Sci., 29, 741747.Google Scholar
Chamberlain, J. W., and Hunten, D. M. (1987) Theory of Planetary Atmospheres, Academic Press, San Diego, USA.Google Scholar
Chandrasekhar, S. (1950) Radiative Transfer, Oxford University Press.Google Scholar
Chassefière, E., Blamont, J. E., Krasnopolsky, V. A., et al. (1992) Vertical structure and size distributions of Martian aerosols from solar occultation measurements, Icarus, 97, 4669.Google Scholar
Chassefière, E., Drossart, P., and Korablev, O. (1995) Post-Phobos model for the altitude and size distribution of dust in the low Martian atmosphere, Journal of Geophysical Research, 100, 55255539.Google Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al. (2001) Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, Journal of Geophysical Research, 106, 2382323872.Google Scholar
Clancy, R. T. and Lee, S. W. (1991) A new look at dust and clouds in the Mars atmosphere – analysis of emission-phase-function sequences from global Viking IRTM observations, Icarus, 93, 135158.Google Scholar
Clancy, R. T. and Sandor, B. J. (1998) CO2 ice clouds in the upper atmosphere, Geophysical Research Letters, 25, 489492.Google Scholar
Clancy, R. T., Lee, S. W., Gladstone, G. R., et al. (1995) A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and PHOBOS, Journal of Geophysical Research, 100, 52515263.Google Scholar
Clancy, R. T., Wolff, M. J., James, P. B., et al. (1996a), Mars ozone measurements near the 1995 aphelion: Hubble space telescope ultraviolet spectroscopy with the faint object spectrograph, Journal of Geophysical Research, 101, 1277712784.Google Scholar
Clancy, R. T., Grossman, A. W., Wolff, M. J. et al. (1996b) Water vapor saturation at low altitudes around Mars aphelion: a key to Mars climate? Icarus, 122, 3662.Google Scholar
Clancy, R. T., Wolff, M. J., and James, P. B. (1999) Minimal aerosol loading and global increases in atmospheric ozone during the 1996–1997 Martian northern spring season, Icarus 138, 4963.CrossRefGoogle Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al. (2000) An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere, Journal of Geophysical Research, 105, 95539572.Google Scholar
Clancy, R. T., Wolff, M. J., and Christensen, P. R. (2003) Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude, Journal of Geophysical Research (Planets), 108, 5098.Google Scholar
Clancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A. and Smith, M. D. (2007) Mars equatorial mesospheric clouds: global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations, Journal of Geophysical Research (Planets), 112, 04004.Google Scholar
Clancy, R. T., Wolff, M. J., Cantor, B. A., Malin, M. C., and Michaels, T. I. (2009) Valles Marineris cloud trails, Journal of Geophysical Research (Planets), 114, 11002.Google Scholar
Clancy, R. T., Wolff, M. J., Whitney, B. A., et al. (2010) Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations, Icarus, 207, 98109.Google Scholar
Clough, S. A., Shephard, M. W., Mlawer, E. J., et al. (2005) Atmospheric radiative transfer modeling: a summary of the AER codes, Journal of Quantative Spectroscopy and Radiative Transfer, 91, 233244.Google Scholar
Cloutis, E. A., McCormack, K. A., Bell, J. F., et al. (2008) Ultraviolet spectral reflectance properties of common planetary minerals, Icarus 197, 321347.Google Scholar
Code, A. D. (1967) Radiative transfer in a spherical Compton scattering atmosphere, Astrophysical Journal, 149, 253263.Google Scholar
Colaprete, A. and Toon, O. B. (2000) The radiative effects of Martian water ice clouds on the local atmospheric temperature profile, Icarus, 145, 524532.CrossRefGoogle Scholar
Colaprete, A. and Toon, O. B. (2003) Carbon dioxide clouds in an early dense Martian atmosphere, Journal of Geophysical Research (Planets), 108, 5025.Google Scholar
Colaprete, A., Toon, O. B., and Magalhães, J. A. (1999) Cloud formation under Mars Pathfinder conditions, Journal of Geophysical Research, 104, 90439054.Google Scholar
Colaprete, A., Barnes, J. R., Haberle, R. M., and Montmessin, F. (2008) CO2 clouds, CAPE and convection on Mars: observations and general circulation modeling, Planetary and Space Science, 56, 150180.Google Scholar
Colburn, D. S., Pollack, J. B., and Haberle, R. M. (1989) Diurnal variations in optical depth at Mars, Icarus, 79, 159189.Google Scholar
Colina, L., Bohlin, R. C., and Castelli, F. (1996) The 0.12–2.5 micron absolute flux distribution of the Sun for comparison with solar analog stars, Astronomical Journal, 112, 307.Google Scholar
Conrath, B. J. (1972) Vertical resolution of temperature profiles obtained from remote radiation measurements, J. Atmos. Sci., 29, 12621271.Google Scholar
Conrath, B. J. (1975) Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971, Icarus, 24, 3646.Google Scholar
Conrath, B., Curran, R., Hanel, R., et al. (1973) Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, Journal of Geophysical Research, 78, 42674278.Google Scholar
Conrath, B. J., Pearl, J. C., Smith, M. D., Maguire, W. C., Christensen, P. R., et al. (2000) Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing, Journal of Geophysical Research, 105, 95099520.Google Scholar
Córdoba-Jabonero, C., Lara, L. M., Mancho, A. M., Márquez, A., and Rodrigo, R. (2003) Solar ultraviolet transfer in the Martian atmosphere: biological and geological implications, Planetary and Space Science, 51, 399410.Google Scholar
Coulson, K. L. (1959a) Characteristics of the radiation emerging from the top of a Rayleigh atmosphere-I, Planetary and Space Science, 1, 265.Google Scholar
Coulson, K. L. (1959b) Characteristics of the radiation emerging from the top of a Rayleigh atmosphere-II Total upward flux and albedo, Planetary and Space Science, 1, 277284.Google Scholar
Coulson, K. L. and Fraser, R. S. (1975) Radiation in the atmosphere, Reviews of Geophysics and Space Physics, 13, 732737.Google Scholar
Coulson, K. L., Dave, J. V., and Sekera, Z. (1960) Tables Related to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering, University of California Press.Google Scholar
Crisp, D. (1990) Infrared radiative transfer in the dust-free Martian atmosphere, Journal of Geophysical Research, 95, 1457714588.Google Scholar
Crisp, D., Pathare, A., and Ewell, R. C. (2004) The performance of gallium arsenide/germanium solar cells at the Martian surface, Acta Astronautica, 54 (2), 83101.Google Scholar
Curran, R. J., Conrath, B. J., Hanel, R. A., Kunde, V. G., and Pearl, J. C. (1973) Mars: Mariner 9 spectroscopic evidence for H2O ice clouds, Science, 182, 381383.Google Scholar
Curtis, A. R. (1952) Contribution to a discussion of “A statistical model for water vapour absoprtion” by R. M. Goody, Quart. J. Roy. Meteo Soc., 78, 638.Google Scholar
Cuzzi, J. N., Ackerman, T. P., and Helmle, L. C. (1982) The delta-four-stream approximation for radiative flux transfer, Journal of Atmospheric Sciences, 39, 917925.Google Scholar
Dahlback, A. and Stamnes, K. (1991) A new spherical model for computing the radiation field available for photolysis and heating at twilight, Planetary and Space Science, 39, 671683.Google Scholar
Deirmendjian, D. (1964) Scattering and polarization properties of water clouds and hazes in the visible and infrared, Applied Optics, 3, 187.Google Scholar
Deland, M. T. and Cebula, R. P. (2008) Creation of a composite solar ultraviolet irradiance data set, Journal of Geophysical Research (Space Physics), 113, 11103.Google Scholar
Deming, D. and Mumma, M. J. (1983) Modeling of the 10-micron natural laser emission from the mesospheres of Mars and Venus, Icarus, 55, 356368.Google Scholar
Deming, D., Espenak, F., Jennings, D., et al. (1983) Observations of the 10-micron natural laser emission from the mesospheres of Mars and Venus, Icarus, 55, 347355.Google Scholar
Dickinson, R. E. (1972) Infrared radiative heating and cooling in the Venusian mesosphere. I. Global mean radiative equilibrium, J. Atmos. Sci., 29, 15311556.Google Scholar
Dickinson, R. E. (1976) Infrared radiative emission in the venusian mesosphere, J. Atmos. Sci., 33, 290303.Google Scholar
Dickinson, R. E. and Bougher, S. W. (1986) Venus mesosphere and thermosphere 1. Heat budget and thermal structure, Journal of Geophysical Research, 91, 7080.Google Scholar
Dlugach, Z. M., Mishchenko, M. I., and Morozhenko, A. V. (2002) The effect of the shape of dust aerosol particles in the Martian atmosphere on the particle parameters, Solar System Research, 36, 367373.Google Scholar
Eckermann, S. D., Ma, J., and Zhu, X. (2011) Scale-dependent infrared radiative damping rates on Mars and their role in the deposition of gravity-wave momentum flux, Icarus. 211, 429442.Google Scholar
Eddington, A. S. (1916) On the radiative equilibrium of the stars, Monthy Notices of the Royal Astronomical Society, 77, 1635.Google Scholar
Edwards, J. M., and Slingo, A. (1996) Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model, Quart. Journal Royal Meteorol. Soc., 122, 689719.Google Scholar
Egan, W. G., Fischbein, W. L., Smith, L. L., and Hilgeman, T. (1980) High-resolution Martian atmosphere modeling, Icarus, 41, 166174.Google Scholar
Elsasser, W. M. (1938) Mean absorption and equivalent absorption coefficient of a band spectrum, Phys. Rev., 54, 126129.Google Scholar
Elsasser, W. M. (1942) Heat Transfer by Infrared Radiation in the Atmosphere, Cambridge: Harvard University Press.Google Scholar
Elteto, A. and Toon, O. B. (2010a) Retrieval algorithm for atmospheric dust properties from Mars Global Surveyor Thermal Emission Spectrometer data during global dust storm 2001A, Icarus, 210, 566588.Google Scholar
Elteto, A. and Toon, O. B. (2010b) The effects and characteristics of atmospheric dust during Martian global dust storm 2001A, Icarus, 210, 589611.Google Scholar
Eluszkiewicz, J., Moncet, J.-L., Shephard, M. W., et al (2008) Atmospheric and surface retrievals in the Mars polar regions from the Thermal Emission Spectrometer measurements, Journal of Geophysical Research (Planets), 113, 10010.Google Scholar
Emmanuel, C. B. (1968) Radiative equilibrium temperature distribution of the atmosphere of Mars, Journal of Geophysical Research, 73, 10, 21562202.Google Scholar
Encrenaz, T., Fouchet, T., Melchiorri, R., et al. (2006) Seasonal variations of the Martian CO over Hellas as observed by OMEGA/Mars Express, Astronomy and Astrophysics, 459, 265270.Google Scholar
Encrenaz, T., Fouchet, T., Melchiorri, R., et al. (2008) A study of the Martian water vapor over Hellas using OMEGA and PFS aboard Mars Express, Astronomy and Astrophysics, 484, 547553.Google Scholar
Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O. (2011) ARTS, the Atmospheric Radiative Transfer Simulator, version 2, Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 15511558.Google Scholar
Ermolli, I., Matthes, K., Dudok de Wit, T., et al. (2013) Recent variability of the solar spectral irradiance and its impact on climate modeling, Atmospheric Chemistry and Physics, 13, 39453977.Google Scholar
Evans, K. F. (1998) The spherical harmonics discrete ordinate method for three-dimensional atmospherica radiative transfer, Journal of Atmospheric Science, 30, 169179.Google Scholar
Evans, K. and Marshak, A. (2005) Numerical methods, in 3D Radiative Tranfer in Cloudy Atmospheres, eds. Marshak, A. and Davis, A. B., Heidelberg: Springer.Google Scholar
Fedorova, A. A., Lellouch, E., Titov, D. V., de Graauw, T., and Feuchtgruber, H. (2002) Remote sounding of the Martian dust from ISO spectroscopy in the 2.7 µm CO2 bands, Planetary and Space Science, 50, 39.Google Scholar
Fedorova, A. A., Rodin, A. V., and Baklanova, I. V. (2004) Seasonal cycle of water vapor in the atmosphere of mars as revealed from the MAWD/Viking 1 and 2 experiment, Solar System Research, 38, 421433.Google Scholar
Fedorova, A., Korablev, O., Bertaux, J.-L., et al. (2006) Mars water vapor abundance from SPICAM IR spectrometer: seasonal and geographic distributions, Journal of Geophysical Research (Planets), 111, E09S08.Google Scholar
Fedorova, A., Korablev, O. I., Bertaux, J.-L., et al. (2009) Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol, Icarus, 200, 96117.Google Scholar
Fedorova, A. A., Trokhimovsky, S., Korablev, O., and Montmessin, F. (2010) Viking observation of water vapor on Mars: revision from up-to-date spectroscopy and atmospheric models, Icarus, 208, 156164.Google Scholar
Fiorenza, C. and Formisano, V. (2005) A solar spectrum for PFS data analysis, Planetary and Space Science, 53, 10091016.Google Scholar
Fontenla, J. M., Harder, J., Livingston, W., Snow, M., and Woods, T. (2011) High-resolution solar spectral irradiance from extreme ultraviolet to far infrared, Journal of Geophysical Research (Atmospheres), 116, 20108.Google Scholar
Forget, F. and Pierrehumbert, R. T. (1998) Warming early Mars with carbon dioxide clouds that scatter infrared radiation, Science, 278, 1273.Google Scholar
Forget, F., Hourdin, F., and Talagrand, O. (1998) CO2 snowfall on Mars: simulation with a general circulation model, Icarus, 131, 302316.Google Scholar
Forget, F., Hourdin, F., Fournier, R., et al. (1999) Improved general circulation models of the Martian atmosphere from the surface to above 80 km, Journal of Geophysical Research, 104, 2415524176.Google Scholar
Forget, F., Spiga, A., Dolla, B., et al (2007) Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method, Journal of Geophysical Research (Planets), 112.Google Scholar
Forget, F., Montmessin, F., Bertaux, J.-L., et al. (2009) Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM, Journal of Geophysical Research (Planets), 114, E01004.Google Scholar
Formisano, V., Maturilli, A., Giuranna, M., D’Aversa, E., and López-Valverde, M. A. (2006) Observations of non-LTE emission at 4–5 microns with the planetary Fourier spectrometer aboard the Mars Express mission, Icarus, 182, 5167.Google Scholar
Foster, J. L., Chang, A. T. C., Hall, D. K., et al. (1998) Carbon dioxide crystals: an examination of their size, shape, and scattering properties at 37 GHz and comparisons with water ice (snow) measurements, Journal of Geophysical Research, 103, 2583925850.Google Scholar
Fritts, D. C., Wang, L., and Tolson, R. H. (2006) Mean and gravity wave structures and variability in the Mars upper atmosphere inferred from Mars Global Surveyor and Mars Odyssey aerobraking densities, Journal of Geophysical Research (Space Physics), 111, 12304.Google Scholar
Funke, B., López-Puertas, M., García-Comas, M., et al. (2012) GRANADA: a Generic RAdiative traNsfer AnD non-LTE population algorithm, Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 17711817.Google Scholar
Gierasch, P. and Goody, R. (1967) An approximate calculation of radiative heating and radiative equilibrium in the Martian atmosphere, Planetary and Space Science, 15, 14651477.Google Scholar
Gierasch, P. J. and Goody, R. M. (1973) A model of a Martian great dust storm, Journal of Atmospheric Science, 30, 169179.Google Scholar
Godson, W. L. (1953) The evaluation of infra-red radiative fluxes due to atmospheric water vapour, Quart. J. Roy. Meteo. Soc., 79, 367.Google Scholar
González-Galindo, F., López-Valverde, M. A., Angelats i Coll, M., and Forget, F. (2005) Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models, Journal of Geophysical Research (Planets), 110, 09008.Google Scholar
González-Galindo, F., Forget, F., López-Valverde, M. A., and Angelats i Coll, M. (2009a) A ground-to-exosphere Martian general circulation model: 2. Atmosphere during solstice conditions – thermospheric polar warming, Journal of Geophysical Research (Planets), 114, 08004.Google Scholar
González-Galindo, F., Forget, F., López-Valverde, M. A., et al. (2009b) A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures, Journal of Geophysical Research (Planets), 114, 04001.Google Scholar
González-Galindo, F., Määttänen, A., Forget, F., and Spiga, A. (2011) The Martian mesosphere as revealed by CO2 cloud observations and General Circulation Modeling, Icarus, 216, 1022.Google Scholar
Goody, R. M. (1952) A statistical model for water vapor absorption, Quart. J. Roy. Meteo. Soc., 78, 165169.Google Scholar
Goody, R. M. (1964) Atmospheric Radiation: Theoretical Basis, Oxford University Press.Google Scholar
Goody, R. and Belton, M. J. S. (1967) A discussion of Martian atmospheric dynamics, Planetary and Space Science, 15, 247.Google Scholar
Goody, R. M. and Yung, Y. L. (1989) Atmospheric Radiation: Theoretical Basis, 2nd edition, Oxford University Press.Google Scholar
Goody, R., West, R., Chen, L., and Crisp, D. (1989) The correlated-k method for radiation calculations in nonhomogeneous atmospheres, Journal of Quantitative Spectroscopy and Radiative Transfer, 42, 539550.Google Scholar
Gordiets, B. F. and Panchenko, V. I. (1983) Nonequilibrium infrared emission and the natural laser effect in the Venus and Mars atmospheres, Cosmic Research, 21, 929939.Google Scholar
Grandjean, J. and Goody, R. M. (1955) The Concentration of Carbon Dioxide in the Atmosphere of Mars, Astrophysical Journal, 121, 548.Google Scholar
Grassi, D., Fiorenza, C., Zasova, L. V., et al. (2005) The Martian atmosphere above great volcanoes: early planetary Fourier spectrometer observations, Planet. Space Sci., 53, 10171034.Google Scholar
Gray, L. D. (1966) Transmission of the atmosphere of Mars in the region of 2µm, Icarus, 5, 390.Google Scholar
Greybush, S. J., Wilson, R. J., Kalnay, E., et al. (2012) Ensemble Kalman filter data assimilation of thermal emission spectrometer (TES) profiles into a Mars global circulation model Journal of Geophysical Research, 117, E11008, doi:10.1029/2012JE004097.Google Scholar
Grundy, W. M. and Schmitt, B. (1998) The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice, Journal of Geophysical Research, 103, 2580925822.Google Scholar
Gruszka, M. and Borysow, A. (1997) Roto-translational collision-induced absorption of CO2 for the atmosphere of Venus at frequencies from 0 to 250 cm−1, at temperatures from 200 to 800 K, Icarus, 129, 172177.Google Scholar
Guzewich, S. D., Toigo, A. D., Richardson, M. I., et al. (2013) The impact of a realistic vertical dust distribution on the simulation of the Martian general circulation, J. Geophys. Res., 118, 980993.Google Scholar
Guzewich, S. D., Smith, M. D., and Wolff, M. J. (2014) Aerosol particle size retrievals from the Compact Reconnaissance Imaging Spectrometer for Mars, The Fifth International Workshop of the Mars Atmosphere: Modeling and Observation, Oxford, UK, January 13–16.Google Scholar
Haberle, R. M. (2013) Estimating the power of Mars’ greenhouse effect, Icarus, 223, 619620.Google Scholar
Haberle, R. M., Leovy, C. B., and Pollack, J. B. (1982) Some effects of global dust storms on the atmospheric circulation of Mars, Icarus, 50, 322367.CrossRefGoogle Scholar
Haberle, R. M., Pollack, J. B., Barnes, J. R., et al. (1993a) Mars atmospheric dynamics as simulated by the NASA AMES general circulation model. I – The zonal-mean circulation, Journal of Geophysical Research, 98, 30933123.Google Scholar
Haberle, R. M., Houben, H. C., Hertenstein, R., and Herdtle, T. (1993b) A boundary-layer model for Mars: comparison with Viking Lander and entry data, J. Atmos. Sci., 50, 15441559.Google Scholar
Haberle, R. M., Houben, H., Barnes, J. R., and Young, R. E. (1997) A simplified three-dimensional model for Martian climate studies, Journal of Geophysical Research, 102, 90519067.Google Scholar
Haberle, R. M., Joshi, M. M., Murphy, J. R., et al. (1999) General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, Journal of Geophysical Research, 104, 89578974.Google Scholar
Haberle, R. M., Montmessin, F., Kahre, M. A., et al. (2011) Radiative effects of water ice clouds on the Martian seasonal water cycle in The Fourth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, France.Google Scholar
Hamilton, V. E., McSween, H. Y., and Hapke, B. (2005) Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols, Journal of Geophysical Research (Planets), 110, 12006.Google Scholar
Hanel, R. A., Conrath, B. J., Jennings, D. E., and Samuelson, R. E. (2003) Exploration of the Solar System by Infrared Remote Sensing, 2nd edition, New York: Cambridge University Press.Google Scholar
Hansen, G. B. (1997) The infrared absorption spectrum of carbon dioxide ice from 1.8 to 333 µm, Journal of Geophysical Research, 102, 2156921588.Google Scholar
Hansen, G. B. (2005) Ultraviolet to near-infrared absorption spectrum of carbon dioxide ice from 0.174 to 1.8 µm, Journal of Geophysical Research (Planets), 110, 11003.Google Scholar
Hansen, J. E. (1971) Multiple scattering of polarized light in planetary atmospheres. II. Sunlight reflected by terrestrial water clouds, J. Atmos. Sci., 28, 14001426.2.0.CO;2>CrossRefGoogle Scholar
Hansen, J. E. and Travis, L. D. (1974) Light scattering in planetary atmospheres, Space Sci. Rev., 16 (4), 527610.Google Scholar
Hapke, B. (1993) Theory of Reflectance and Emittance Spectroscopy, Topics in Remote Sensing, Cambridge University Press.Google Scholar
Hartogh, P., Medvedev, A. S., Kuroda, T., et al. (2005) Description and climatology of a new general circulation model of the Martian atmosphere, Journal of Geophysical Research (Planets), 110, 11008.Google Scholar
Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., et al. (2012) The Radiation Assessment Detector (RAD) Investigation, Space Sci. Rev., 170, 503558, 10.1007/s11214–012–9913–1.Google Scholar
Hayne, P. O., Paige, D. A., Heavens, N. G., et al. (2014) The role of snowfall in forming the seasonal ice caps of Mars: models and constraints from the Mars Climate Sounder, Icarus, 231, 122130.Google Scholar
Heavens, N. G., Richardson, M. I., Kleinböhl, A., et al. (2011) The vertical distribution of dust in the Martian atmosphere during northern spring and summer: observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles, Journal of Geophysical Research (Planets), 116, 04003.Google Scholar
Henyey, L. G. and Greenstein, J. L. (1941) Diffuse radiation in the Galaxy, Astrophysical Journal, 93, 7083.CrossRefGoogle Scholar
Herman, B. M., Thome, K. J., and Ben-David, A. (1994) Numerical technique for solving the radiative transfer equation for a spherical shell atmosphere, Applied Optics, 33, 17601770.Google Scholar
Herman, B. M., Flittner, D. E., Caudill, T. R., Thome, K. J., and Ben-David, A. (1995) Comparison of the Gauss-Seidel spherical polarized radiative transfer code with other radiative transfer codes, Applied Optics, 34, 4563.Google Scholar
Hinson, D. P. and Wilson, R. J. (2004) Temperature inversions, thermal tides, and water ice clouds in the Martian tropics, Journal of Geophysical Research (Planets), 109, 01002.Google Scholar
Hinson, D. P., Simpson, R. A., Twicken, J. D., et al. (1999) Initial results from radio occultation measurements with Mars Global Surveyor, Journal of Geophysical Research, 104, 26997.Google Scholar
Hinson, D. P., Smith, M. D., and Conrath, B. J. (2004) Comparison of atmospheric temperatures obtained through infrared sounding and radio occultation by Mars Global Surveyor, Journal of Geophysical Research (Planets), 109, 12002.Google Scholar
Hoffman, M. J., Eluszkiewicz, J., Weisenstein, D., Uymin, G., and Moncet, J.-L. (2012) Assessment of Mars atmospheric temperature retrievals from the Thermal Emission Spectrometer radiances, Icarus, 220, 10311039.Google Scholar
Houghton, J. (1986) Physics of the Atmosphere, 2nd edition, Cambridge University Press.Google Scholar
Hourdin, F. (1992) A new representation of the absorption by the CO2 15-microns band for a Martian general circulation model, Journal of Geophysical Research, 97, 18319.Google Scholar
Hourdin, F., Le Van, P., Forget, F., and Talagrand, O. (1993) Meteorological variability and the annual surface pressure cycle on Mars, Journal of Atmospheric Sciences, 50, 36253640.Google Scholar
Hourdin, F., Forget, F., and Talagrand, O. (1995) The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: a comparison between numerical simulations and Viking observations, Journal of Geophysical Research, 100, 55015523.Google Scholar
Hovenier, J. W., van de Hulst, H. C., and van der Mee, C. V. M. (1986) Conditions for the elements of the scattering matrix, Astronomy and Astrophysics, 157, 301310.Google Scholar
Huestis, D. L. (2001) Accurate evaluation of the Chapman function for atmospheric attenuation, Journal of Quantitative Spectroscopy and Radiative Transfer, 69, 709721.Google Scholar
Humlicek, J. (1982) Optimized computation of the Voigt and complex probability functions, JQSRT, 27, 437.Google Scholar
Hunt, G. E. (2005) On the opacity of Martian dust storms derived by Viking IRTM spectral measurements, Journal of Geophysical Research, 84, 83018310.Google Scholar
Ignatiev, N. I., Grassi, D., and Zasova, L. V. (2005) Planetary Fourier spectrometer data analysis: fast radiative transfer models, Planetary and Space Science, 53, 10351042.Google Scholar
Isenor, M., Escribano, R., Preston, T. C., and Signorell, R. (2013) Predicting the infrared band profiles for CO2 cloud particles on Mars, Icarus, 223, 591601.Google Scholar
Ityaksov, D., Linnartz, H., and Ubachs, W. (2008) Deep-UV absorption and Rayleigh scattering of carbon dioxide, Chemical Physics Letters, 462, 3134.Google Scholar
Iwabuchi, H. and Yang, P. (2011) Temperature dependence of ice optical constants: implications for simulating the single-scattering properties of cold ice clouds, Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 25202525.Google Scholar
Jacquinet-Husson, N., Scott, N. A., Chédin, A., et al. (1998) The GEISA system in 1996: towards an operational tool for the second generation vertical sounders radiance simulation, Journal of Quantitative Spectroscopy and Radiative Transfer, 59, 511527.Google Scholar
Jacquinet-Husson, N., Scott, N. A., Chédin, A., et al. (2008) The GEISA spectroscopic database: current and future archive for Earth and planetary atmosphere studies, Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 10431059.Google Scholar
Jacquinet-Husson, N., Crepeau, L., Armante, R., et al. (2011) The 2009 edition of the GEISA spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 23952445.Google Scholar
James, P. B., and North, G. R. (1982) The seasonal CO2 cycle on Mars: an application of an energy balance climate model, Journal of Geophysical Research, 87, B12 21562202Google Scholar
James, P. B., Clancy, R. T., Lee, S. W., et al. (1994) Monitoring Mars with the Hubble Space Telescope: 1990–1991 observations, Icarus, 109, 79101.Google Scholar
Jaquin, F., Gierasch, P., and Kahn, R. (1986) The vertical structure of limb hazes in the Martian atmosphere, Icarus, 68, 442461.Google Scholar
Jayaweere, K. and Mason, B. (1965) The behavior of freely falling cylinders and cones in a viscous fluid, J. Fluid Mec., 22, 709720, 1965.Google Scholar
Johnson, M. A., Betz, A. L., McLaren, R. A., Townes, C. H., and Sutton, E. C. (1976) Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus, Astrophysical Journal, 208, L145–L148.Google Scholar
Johnson, J. R., Grundy, W. M., Lemmon, M. T., et al. (2006) Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity, Journal of Geophysical Research (Planets), 111, E12S16.Google Scholar
Joseph, J. H., Wiscombe, W. J., and Weinman, J. A. (1976) The delta-Eddington approximation for radiative flux transfer, Journal of Atmospheric Sciences, 33, 24522459.Google Scholar
Joshi, M. M., Lewis, S. R., Read, P. L., and Catling, D. C. (1995) Western boundary currents in the Martian atmosphere: numerical simulations and observational evidence, Journal of Geophysical Research, 100, 54855500.Google Scholar
Kahnert, M. (2013a) The T-matrix code Tsym for homogeneous dielectric particles with finite symmetries, Journal of Quantitative Spectroscopy and Radiative Transfer, 123, 6278.Google Scholar
Kahnert, M. (2013b) T-matrix computations for particles with high-order finite symmetries, Journal of Quantitative Spectroscopy and Radiative Transfer, 123, 7991.Google Scholar
Kahre, M. A., Murphy, J. R., Haberle, R. M., et al. (2005) Simulating the Martian dust cycle with a finite surface dust reservoir, Geophys. Res. Lett., 32, L20204.Google Scholar
Kahre, M. A., Murphy, J. R., and Haberle, R. M. (2006) Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model, Journal of Geophysical Research, 111, E06008, doi:10.1029/2005JE002588.Google Scholar
Kahre, M. A., Hollingsworth, J. L., Haberle, R. M. (2014) Investigating the effects of water ice cloud radiative forcing on the predicted patterns and strength of dust lifting on Mars. In AAS/Division for Planetary Sciences Meeting Abstracts.Google Scholar
Kahre, M. A., Hollingsworth, J. L., Haberle, R. M., and Murphy, J. R. (2008) Investigations of the variability of dust particle sizes in the Martian atmosphere using the NASA Ames General Circulation Model, Icarus, 195, 576597.Google Scholar
Kaplan, D. I. (1988) Environment of Mars, 1988. NASA STI/Recon Technical Report N 89.Google Scholar
Kaplan, L. D., Münch, G., and Spinrad, H. (1964) An analysis of the spectrum of Mars, Astrophysical Journal, 139, 1.Google Scholar
Kattawar, G. W., Young, A. T., and Humphreys, T. J. (1981) Inelastic scattering in planetary atmospheres. I – The ring effect, without aerosols, Astrophysical Journal, 243, 10491057.Google Scholar
Kieffer, H. H. (2013) Thermal model for analysis of Mars infrared mapping, Journal of Geophysical Research (Planets), 118, 451470.Google Scholar
Kieffer, H. H. and Titus, T. N. (2001) TES mapping of Mars’ north seasonal cap, Icarus, 154, 162180.Google Scholar
Kieffer, H. H., Titus, T. N., Mullins, K. F., and Christensen, P. R. (2000) Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size, Journal of Geophysical Research, 105, 96539700.Google Scholar
King, J. I. (1952) Transfer Theory for Purely Pressure-broadened Band Spectra, Astrophysical Journal, 116, 491497.Google Scholar
Kleinböhl, A., Schofield, J. T., Kass, D. M., et al. (2009) Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity, Journal of Geophysical Research (Planets), 114, 10006.Google Scholar
Kleinböhl, A., Schofield, J. T., Abdou, W. A., Irwin, P. G. J., and de Kok, R. J. (2011) A single-scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere, Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 15681580.Google Scholar
Kleinböhl, A., Wilson, R. J., Kass, D., Schofield, J. T., and McCleese, D. J. (2013) The semidiurnal tide in the middle atmosphere of Mars, Geophys. Res. Lett., 40, 19521959, doi:10.1002/grl.50497.Google Scholar
Korablev, O. I. (2002) Solar occultation measurements of the Martian atmosphere on the Phobos spacecraft: water vapor profile, aerosol parameters, and other results, Solar System Research, 36, 1234.Google Scholar
Korablev, O., Bertaux, J.-L., Fedorova, A., Fonteyn, D., Stepanov, A., et al. (2006) SPICAM IR acousto-optic spectrometer experiment on Mars Express, Journal of Geophysical Research (Planets), 111, E09S03.Google Scholar
Kuroda, T., Medvedev, N. A. S., Hartogh, P., and Takahashi, M. (2007) Seasonal change of the baroclinic wave activity in the northern hemisphere of Mars simulated with a GCM, Geophys. Res. Lett., 34, L09203.Google Scholar
Laan, E. C., Volten, H., Stam, D. M., et al. (2009) Scattering matrices and expansion coefficients of Martian analogue palagonite particles, Icarus, 199, 219230, 2009.Google Scholar
Lacis, A. A. and Oinas, V. (1991) A description of the correlated-k distribution method for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres, Journal of Geophysical Research, 96, 90279064.Google Scholar
Lacis, A. A., Chowdhary, J., Mishchenko, M. I., and Cairns, B. (1998) Modeling errors in diffuse-sky radiation: vector vs. scalar treatment, Geophysical Research Letters, 25, 135138.Google Scholar
Lang, K. R. (2006) Astrophysical formulae, volume 1 (3rd edition), Birkhäuser.Google Scholar
Leblanc, F., Luhmann, J. G., Johnson, R. E., and Chassefiere, E. (2002) Some expected impacts of a solar energetic particle event at Mars, J. Geophys. Res., 107, SIA5.Google Scholar
Lebonnois, S., Quémerais, E., Montmessin, F., et al.(2006) Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations, Journal of Geophysical Research (Planets), 111, E09S05.Google Scholar
Lee, C., Lawson, W. G., Richardson, M. I. et al. (2009) Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder, Journal of Geophysical Research, 114, E03005, doi:10.10129/2008JE003285.Google Scholar
Lellouch, E., Encrenaz, T., de Graauw, T., et al. (2000) The 2.4–45 µm spectrum of Mars observed with the infrared space observatory, Planetary and Space Science, 48, 13931405.Google Scholar
Lemmon, M. T. (2014) Large water ice aerosols in Martian north polar clouds, The Fifth International Workshop of the Mars Atmosphere: Modeling and Observation, Oxford, UK, January 13–16.Google Scholar
Lemmon, M. T., Wolff, M. J., Smith, M. D., et al. (2004) Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity, Science, 306, 17531756.Google Scholar
Lenoble, J. and Sekera, Z. (1961) Equation of radiative transfer in a planetary spherical atmosphere, Proceedings of the National Academy of Science, 47, 372378, 1961.Google Scholar
Leovy, C. and Mintz, Y. (1969) Numerical simulation of the stmospheric circulation and climate of Mars, Journal of Atmospheric Sciences, 26, 11671190.Google Scholar
Lewis, S. R., Collins, M., Read, P. L., et al. (1999) A climate database for Mars, Journal of Geophysical Research, 104, 2417724194.Google Scholar
Liou, K. N. (1974) Analytic two-stream and four-stream solutions for radiative transfer, Journal of Atmospheric Sciences, 31, 1473.Google Scholar
Liou, K. N. (2002) An Introduction to Atmospheric Radiation, 2nd edition, San Diego: Academic Press.Google Scholar
Liu, Y. and Liu, F. (1994) On the description of aerosol particle size distribution, Atmospheric Research, 31, 187.Google Scholar
López-Puertas, M. and López-Valverde, M. A. (1995) Radiative energy balance of CO2 non-LTE infrared emissions in the Martian atmosphere, Icarus, 114, 113129.Google Scholar
López-Puertas, M. and Taylor, F. W. (2001) Non-LTE Radiative Transfer in the Atmosphere, World Scientific, Singapore.Google Scholar
López-Puertas, M., Molina, A., Rodrigo, R., and Taylor, F. W. (1986) A non-LTE radiative transfer model for infrared bands in the middle atmosphere. I – Theoretical basis and application to CO2 15 micron bands, Journal of Atmospheric and Terrestrial Physics, 48, 729748.Google Scholar
López-Valverde, M. A. (1990) Emisiones infrarrojas en la atmósfera de Marte, Ph.D Thesis, Granada University.Google Scholar
López-Valverde, M. A. and González-Galindo, F. (2008) Fast computation of CO2 cooling rates for a Mars GCM, Third International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia, USA.Google Scholar
López-Valverde, M. A. and López-Puertas, M. (1994a) A non-local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars. 1: Theoretical basis and nighttime populations of vibrational levels, Journal of Geophysical Research, 99, 1309313115.Google Scholar
López-Valverde, M. A. and López-Puertas, M. (1994b) A non-local thermodynamic equilibrium radiative transfer model for infrared emission in the atmosphere of Mars. 2: Daytime populations of vibrational levels, Journal of Geophysical Research, 99, 1311713132.Google Scholar
López-Valverde, M. A. and López-Puertas, M. (2001) Atmospheric non-LTE effects and their parameterization for Mars, ESA Technical Report.Google Scholar
López-Valverde, M. A., Edwards, D. P., López-Puertas, M., and Roldán, C. (1998) Non-local thermodynamic equilibrium in general circulation models of the Martian atmosphere 1. Effects of the local thermodynamic equilibrium approximation on thermal cooling and solar heating, Journal of Geophysical Research, 103, 1679916812.Google Scholar
López-Valverde, M. A., Haberle, R. M., and López-Puertas, M. (2000) Non-LTE Radiative Mesospheric Study for Mars Pathfinder Entry, Icarus, 146, 360365.Google Scholar
López-Valverde, M. A., López-Puertas, M., López-Moreno, J. J., et al. (2005) Analysis of CO2 non-LTE emissions at 4.3µm in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO, Planetary and Space Science, 53, 10791087.Google Scholar
López-Valverde, M. A., Gilli, G., García-Comas, M., et al. (2008) The upper atmosphere of Venus observed by Venus Express, Lecture Notes and Essays in Astrophysics, 3, 1332.Google Scholar
López-Valverde, M. A., López-Puertas, M., Funke, B., et al. (2011a) Modeling the atmospheric limb emission of CO2 at 4.3 µm in the terrestrial planets, Planetary and Space Science, 59, 988998.Google Scholar
López-Valverde, M. A., Sonnabend, G., Sornig, M., and Kroetz, P. (2011b) Modelling the atmospheric CO2 10 µm non-thermal emission in Mars and Venus at high spectral resolution. Planetary and Space Science, 59, 9991009.Google Scholar
López-Valverde, M. A., Montabone, L., Sonnabend, G., and Sornig, M. (2011c) Mars mesospheric winds: strategy for accurate comparisons between ground based observations and GCM models, in The Fourth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, France.Google Scholar
López-Valverde, M. A., González-Galindo, F., and López-Puertas, M. (2011d) Revisiting the thermal balance of the mesosphere of Mars, in The Fourth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, France.Google Scholar
Loughman, R. P., Griffioen, E., Oikarinen, L., et al. (2004) Comparison of radiative transfer models for limb-viewing scattered sunlight measurements, Journal of Geophysical Research (Atmospheres), 109, 06303.Google Scholar
Määttänen, A., Fouchet, T., Forni, O., et al. (2009) A study of the properties of a local dust storm with Mars Express OMEGA and PFS data, Icarus, 201, 504516.Google Scholar
Määttänen, A., Montmessin, F., Gondet, B., et al. (2010) Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models, Icarus, 209, 452469.Google Scholar
Macke, A., Mishchenko, M. I., Muinonen, K., and Carlson, B. E. (1995) Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method, Optics Letters, 20, 19341936.Google Scholar
Madeleine, J.-B., Forget, F., Millour, E., Montabone, L., and Wolff, M. J. (2011) Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model, Journal of Geophysical Research (Planets), 116, 11010.Google Scholar
Madeleine, J.-B., Forget, F., Spiga, A., et al. (2012a) Aphelion water-ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express, Journal of Geophysical Research (Planets), 117, 00J07.Google Scholar
Madeleine, J.-B., Forget, F., Millour, E., Navarro, T., and Spiga, A. (2012b) The influence of radiatively active water ice clouds on the Martian climate, Geophysical Research Letters, 39, 23202.Google Scholar
Magalhães, J. A., Schofield, J. T., and Seiff, A. (1999) Results of the Mars Pathfinder atmospheric structure investigation, Journal of Geophysical Research, 104, 89438956.Google Scholar
Maguire, W. C., Pearl, J. C., Smith, M. D., et al. (2002) Observations of high-altitude CO2 hot bands in Mars by the orbiting Thermal Emission Spectrometer, Journal of Geophysical Research (Planets), 107, 5063.Google Scholar
Malin, M. C., Calvin, W. M., Cantor, B. A., et al. (2008) Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager, Icarus, 194, 501512.Google Scholar
Maltagliati, L., Titov, D. V. Encrenaz, T., et al. (2011) Annual survey of water vapor behavior from the OMEGA mapping spectrometer onboard Mars Express, Icarus, 213, 480495.Google Scholar
Marshak, A. and Davis, A. B. (2005) Horizontal fluxes and radiative smoothing, in 3D Radiative Transfer in Cloudy Atmospheres, eds. Marshak, A, and Davis, A. B., Heidelberg: Springer.Google Scholar
Marshak, A., and Knyazikhin, Y. (2005) A primer in 3D radiative transfer, in 3D Radiative Transfer in Cloudy Atmospheres, eds. Marshak, A, and Davis, A. B., Heidelberg: Springer.Google Scholar
Marshak, A., Davis, A. Wiscombe, W., and Cahalan, R. (1995) Radiative smoothing in fractal clouds, Journal of Geophysical Research, 100, 26247.Google Scholar
Marshak, A., Oreopoulos, L., Davis, A. B., Wiscombe, W. J., and Cahalan, R. F. (1999) Horizontal radiative fluxes in clouds and accuracy of the independent pixel approximation at absorbing wavelengths, Geophysical Research Letters, 26, 15851588.Google Scholar
Martin, T. Z. (1986) Thermal infrared opacity of the Mars atmosphere, Icarus, 66, 221.Google Scholar
Martin, T. Z. and Richardson, M. I. (1993) New dust opacity mapping from Viking Infrared Thermal Mapper data, Journal of Geophysical Research, 98, 10941.Google Scholar
Mastrapa, R. M., Bernstein, M. P., Sandford, S. A., et al. (2008) Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2.6 µm, Icarus, 197, 307320.Google Scholar
Mayer, B. and Kylling, A. (2005) Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmospheric Chemistry and Physics, 5, 18551877.Google Scholar
McCleese, D. J., Heavens, N. G., Schofield, J. T., et al. (2010) Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols, Journal of Geophysical Research (Planets), 115, 12016.Google Scholar
McConnochie, T. H. and Smith, M. D. (2008) Vertically Resolved Aerosol Climatology from Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) Limb Sounding, Third International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia, USA.Google Scholar
McGuire, P. C., Wolff, M. J., Smith, M. D., et al. (2008) MRO/CRISM retrieval of surface Lambert albedos for multispectral mapping of Mars with DISORT-based radiative transfer modeling: Phase 1 – Using historical climatology for temperatures, aerosol optical depths, and atmospheric pressures, IEEE Transactions on Geoscience and Remote Sensing, 46, 40204040.Google Scholar
McLinden, C. A. and Bourassa, A. E. (2010) A systematic error in plane-parallel radiative transfer calculations, Journal of Atmospheric Sciences, 67, 16951699.Google Scholar
Meador, W. E and Weaver, W. R. (1980) Two-stream approximations to radiative transfer in planetary atmospheres – a unified description of existing methods and a new improvement, Journal of Atmospheric Sciences, 37, 630643.Google Scholar
Medcraft, C., McNaughton, D., Thompson, C. D., et al. (2012) Size and Temperature Dependence in the Far-IR Spectra of Water Ice Particles, The Astrophysical Journal, 758, 17.Google Scholar
Melchiorri, R., Encrenaz, T., Fouchet, T., et al. (2007) Water vapor mapping on Mars using OMEGA/Mars Express, Planetary and Space Science, 55, 333342.Google Scholar
Michaels, T. I., Colaprete, A., and Rafkin, S. C. R. (2006) Significant vertical water transport by mountain-induced circulations on Mars, Geophysical Research Letters, 33, 16201.Google Scholar
Mihalas, D. (1978) Stellar Atmospheres, 2nd edition. San Francisco: W. H. Freeman.Google Scholar
Mishchenko, M. I. (1991) Light scattering by randomly oriented axially symmetric particles, Journal of the Optical Society of America A, 8, 871882.Google Scholar
Mishchenko, M. I. (2002) Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics, Applied Optics, 41, 71147134.Google Scholar
Mishchenko, M. I., Travis, L. D., Kahn, R. A., and West, R. A. (1997) Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, Journal of Geophysical Research, 102, 16831–16847.Google Scholar
Mishchenko, M. I. and Macke, A. (1999) How big should hexagonal ice crystals be to produce halos? Applied Optics, 38, 16261629.Google Scholar
Mishchenko, M. and Travis, L. D. (1994) Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation, Applied Optics, 33, 72067225.Google Scholar
Mishchenko, M. I., Lacis, A. A., and Travis, L. D. (1994) Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres, Journal of Quantitative Spectroscopy and Radiative Transfer, 51, 491510.Google Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002) Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press.Google Scholar
Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2006) Multiple Scattering of Light by Particles, Cambridge University Press.Google Scholar
Mischna, M. A., Lee, C., and Richardson, M. (2012) Development of a fast, accurate radiative transfer model for the Martian atmosphere, past and present, Journal of Geophysical Research (Planets), 117, 10009.Google Scholar
Molina-Cuberos, G. J., Lichtenegger, H., Schwingenschuh, K., et al. (2002) Ion-neutral chemistry model of the lower ionosphere of Mars, J. Geophys. Res., 107 (E5), 5027, 10.1029/2000je001447.Google Scholar
Moncet, J.-L., Uymin, G., Lipton, A. E., and Snell, H. E. (2008) Infrared radiance modeling by Optimal Spectral Sampling, Journal of Atmospheric Sciences, 65, 3917.Google Scholar
Montmessin, F., Rannou, P., and Cabane, M. (2002) New insights into Martian dust distribution and water-ice cloud microphysics, Journal of Geophysical Research (Planets), 107, 5037.Google Scholar
Montmessin, F., Forget, F., Rannou, P., Cabane, M., and Haberle, R. M. (2004) Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, Journal of Geophysical Research (Planets), 109, 10004.Google Scholar
Montmessin, F., Quémerais, E., Bertaux, J. L., et al. (2006) Stellar occultations at UV wavelengths by the SPICAM instrument: retrieval and analysis of Martian haze profiles, Journal of Geophysical Research (Planets), 111, E09S09.Google Scholar
Montmessin, F., Gondet, B., Bibring, J.-P., et al. (2007) Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars, Journal of Geophysical Research (Planets), 112, 11S90.Google Scholar
Moriyama, S. (1975) Effects of dust on radiation transfer in the Martian atmosphere. II Heating due to absorption of the visible solar radiation and importance of radiative effects of dust on the Martian meteorological phenomena, Meteorological Society of Japan Journal, 53, 214221.Google Scholar
Moroz, V. I. (1976) The atmosphere of Mars, Space Science Reviews, 19, 763843.Google Scholar
Mumma, M. J., Buhl, D., Chin, G., et al. (1981) Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars – a natural laser, Science, 212, 4549.Google Scholar
Murphy, J. R., Haberle, R. M., Toon, O. B., and Pollack, J. B. (1990) Numerical simulations of the decay of Martian global dust storms, Journal of Geophysical Research, 95, 1462914648.Google Scholar
Murphy, J. R., Haberle, R. M., Toon, O. B., and Pollack, J. B. (1993) Martian global dust storms: zonally symmetric numerical simulations including size-dependent particle transport, Journal of Geophysical Research, 98, 31973220.Google Scholar
Murphy, J. R., Toon, O. B., Haberle, R. M., and Pollack, J. B. (1995) Numerical simulations of the decay of Martian global dust storms, Journal of Geophysical Research, 104, 2417724194.Google Scholar
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. (2002a) Modeling the Martian dust cycle. 1: Representations of dust transport processes, Journal of Geophysical Research, 107, 5123.Google Scholar
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. (2002b) Modeling the Martian dust cycle, 2: Multi-annual radiatively active dust transport simulations, Journal of Geophysical Research, 107, 5124.Google Scholar
Ockert-Bell, M. E., Bell III, J. F., Pollack, J. B., McKay, C. P., and Forget, F. (1997) Absorption and scattering properties of the Martian dust in the solar wavelengths, Journal of Geophysical Research, 102, 90399050.Google Scholar
Oguchi, T. (1973) Attenuation and phase rotation of radio waves due to rain: calculations at 19.3 and 34.8 GHz, Radio Science, 8, 31.Google Scholar
Ohring, G. and Mariano, J. (1968) Seasonal and latitudinal variations of the average surface temperature and vertical temperature profile on Mars, Journal of Atmospheric Sciences, 25, 673681.Google Scholar
Ohring, G., Tang, W., and Desanto, G. (1962) Theoretical estimates of the average surface temperature on Mars, Journal of Atmospheric Sciences, 19, 444449.Google Scholar
Orphal, J. and Chance, K. (2003) Ultraviolet and visible absorption cross-sections for HITRAN, Journal of Quantitative Spectroscopy and Radiative Transfer, 82, 491504.Google Scholar
Pang, K., and Ajello, J. M. (1977) Complex refractive index of Martian dust – wavelength dependence and composition, Icarus, 30, 6374.Google Scholar
Pagaran, J., Weber, M., Deland, M. T., Floyd, L. E., and Burrows, J. P. (2011) Solar Spectral Irradiance Variations in 240–1600 nm During the Recent Solar Cycles 21–23, Solar Physics, 272, 159188.Google Scholar
Parkinson, W. H, Rufus, J., Yoshino, K. (2003) Absolute absorption cross section measurements of CO2 in the wavelength region 163 200 nm and the temperature dependence, Chemical Physics, 290, 251256.Google Scholar
Pearl, J. C, Smith, M. D., Conrath, B. J., Bandfield, J. L., and Christensen, P. R. (2001) Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: the first Martian year, Journal of Geophysical Research, 106, 1232512338.Google Scholar
Perrier, S., Bertaux, J.-L., Lefèvre, F., et al. (2006) Global distribution of total ozone on Mars from SPICAM/MEX UV measurements, Journal of Geophysical Research (Planets), 111, E09S06.Google Scholar
Petrova, E. V. (1999) Optical Thickness and Shape of Dust Particles of the Martian Aerosol, Solar System Research, 33, 260.Google Scholar
Petty, G. W. (2006) A First Course in Atmospheric Radiation, Madison: Sundog Press.Google Scholar
Petty, G. W., and Huang, W. (2011) The modified gamma size distribution applied to inhomogeneous and nonspherical particles: key relationships and conversions, Journal of Atmospheric Sciences, 68, 14601473.Google Scholar
Piccialli, A., Drossart, P., López-Valverde, M. A., et al. (2012) Characterization of OMEGA/MEx CO2 non-LTE limb observations on the dayside of Mars, European Planetary Science Congress, 504.Google Scholar
Pierrehumbert, R. T. (2010) Principles of Planetary Climate, Cambridge University Press.Google Scholar
Pierrehumbert, R. T. and Erlick, C. (1998) On the scattering greenhouse effect of CO2 ice clouds, Journal of Atmospheric Sciences, 55, 18971902.Google Scholar
Pincus, R. and Evans, K. F. (2009) Computational cost and accuracy in calculating three-dimensional radiative transfer: results for new implementations of Monte Carlo and SHDOM, Journal of Atmospheric Sciences, 66, 3131.Google Scholar
Pollack, J. B. and Cuzzi, J. N. (1980) Scattering by nonspherical particles of size comparable to wavelength – a new semi-empirical theory and its application to tropospheric aerosols, Journal of Atmospheric Sciences, 37, 868881.Google Scholar
Pollack, J. B., Colburn, D., Kahn, R., et al. (1977) Properties of aerosols in the Martian atmosphere, as inferred from Viking Lander imaging data, Journal of Geophysical Research, 82, 44794496.Google Scholar
Pollack, J. B., Colburn, D. S., Flasar, F. M., et al. (1979) Properties and effects of dust particles suspended in the Martian atmosphere, Journal of Geophysical Research, 84, 29292945.Google Scholar
Pollack, J. B., Haberle, R. M., Schaeffer, J., and Lee, H. (1990) Simulations of the general circulation of the Martian atmosphere: 1. Polar processes, Journal of Geophysical Research, 95, 14471473.Google Scholar
Pollack, J. B., Ockert-Bell, M. E., and Shepard, M. K. (1995) Viking Lander image analysis of Martian atmospheric dust, Journal of Geophysical Research, 100, 52355250.Google Scholar
Prabhakara, C. and Hogan, J. S. (1965) Ozone and carbon dioxide heating in the Martian Atmosphere, Journal of Atmospheric Sciences, 22, 97109.Google Scholar
Rafkin, S. C. R. (2009) A positive radiative-dynamic feedback mechanism for the maintenance and growth of Martian dust storms, Journal of Geophysical Research (Planets), 114, 01009.Google Scholar
Räisänen, P. (2002) Two-stream approximations revisited: a new improvement and tests with GCM data, Quarterly Journal of the Royal Meteorological Society, 128, 2397–416.Google Scholar
Ramanthan, V. and Cess, R. D. (1974) Radiative transfer within the mesospheres of Venus and Mars, Astrophysical Journal, 188, 407416.Google Scholar
Rannou, P., Perrier, S., Bertaux, J.-L., et al. (2006) Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM, Journal of Geophysical Research (Planets), 111, E09S10.Google Scholar
Rapp-Arrarás, Í. and Domingo-Santos, J. M. (2011), Functional forms for approximating the relative optical air mass, Journal of Geophysical Research (Atmospheres), 116, 24308.Google Scholar
Richardson, M. I. and Wilson, R. J. (2002) A topographically forced asymmetry in the Martian circulation and climate, Nature, 416, 298301.Google Scholar
Richardson, M. I., Wilson, R. J., and Rodin, A. V. (2002) Water ice clouds in the Martian atmosphere: general circulation model experiments with a simple cloud scheme, Journal of Geophysical Research (Planets), 107, 5064.Google Scholar
Robitaille, T. P. (2011) HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code, Astronomy and Astrophysics, 536, 79.Google Scholar
Rodrigo, R., Garcia-Alvarez, E., Lopez-Gonzalez, M. J., and Lopez-Moreno, J. J. (1990) A nonsteady one-dimensional theoretical model of Mars’ neutral atmospheric composition between 30 and 200 km, Journal of Geophysical Research, 95, 1479514810.Google Scholar
Rogers, C. D. (2000) Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, Singapore.Google Scholar
Rothman, L. S. (2010) The evolution and impact of the HITRAN molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 15651567.Google Scholar
Rothman, L. S., Gamache, R. R., Goldman, A, et al. (1987) The HITRAN database: 1986 edition, Applied Optics, 26, 40584097.Google Scholar
Rothman, L. S., Rinsland, C. P., Goldman, A, et al. (1998) The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition, Journal of Quantitative Spectroscopy and Radiative Transfer, 60, 665710.Google Scholar
Rothman, L. S., Jacquinet-Husson, N., Boulet, C., and Perrin, A. M. (2005) History and future of the molecular spectroscopic databases, Comptes Rendus Physique, 6, 897907.Google Scholar
Rothman, L. S., Gordon, I. E., Barbe, A., et al. (2009) The HITRAN 2008 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 533572.Google Scholar
Rozanov, V. V. and Kokhanovsky, A. A. (2006) The solution of the vector radiative transfer equation using the discrete ordinates technique: selected applications, Atmospheric Research, 79, 241265.Google Scholar
Rozanov, V. V. and Rozanov, A. V. (2007) Generalized form of the direct and adjoint radiative transfer equations, Journal of Quantitative Spectroscopy and Radiative Transfer, 104, 155170.Google Scholar
Rozanov, A., Rozanov, V., Buchwitz, M., et al. (2005) SCIATRAN 2.0 A new radiative transfer model for geophysical applications in the 175 2400 nm spectral region, Advances in Space Research, 36, 10151019.Google Scholar
Sagdeev, R. Z. and Zakharov, A. V. (1989) Brief history of the Phobos mission, Nature, 341, 581585.Google Scholar
Sander, S. P., Abbatt, J., Barker, J. R., et al. (2011) Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10–6, Jet Propulsion Laboratory, Pasadena (http://jpldataeval.jpl.nasa.gov).Google Scholar
Sano, I., Mukai, S. Yamano, M., et al. (2003) Calibration and validation of retrieved aerosol properties based on AERONET and SKYNET, Advances in Space Research, 32, 21592164.Google Scholar
Santee, M. L., and Crisp, D. (1995) Diagnostic calculations of the circulation in the Martian atmosphere, Journal of Geophysical Research, 100, 54655484.Google Scholar
Savijärvi, H. (1999) A model study of the atmospheric boundary layer in the Mars Pathfinder Lander conditions, Quarterly Journal of the Royal Meteorological Society, 125, 483493.Google Scholar
Savijärvi, H., Crisp, D. and Harri, A.-M. (2005) Effects of CO2 and dust on present-day solar radiation and climate on Mars, Quarterly Journal of the Royal Meteorological Society, 131, 29072922.Google Scholar
Schofield, J. T., Barnes, J. R., Crisp, D., et al. (1997) The Mars Pathfinder Atmospheric Structure Investigation/Meteorology, Science, 278, 1752.Google Scholar
Schuster, A. (1905) Radiation through a foggy atmosphere, Astrophysical Journal, 21, 1.Google Scholar
Schwarzschild, K. (1906) Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-phys. Klasse, 195, 4153.Google Scholar
Schwarzschild, K. (1914) Sitzungsber. Preussichen Akad., Wiss., Phys.-Math., K1, 1183.Google Scholar
Sefton-Nash, E., Teanby, N. A., Montabone, L., et al. (2013) Climatology and first-order composition estimates of mesospheric clouds from Mars Climate Sounder limb spectra, Icarus, 222, 342356.Google Scholar
Seiff, A. and Kirk, D. B. (1977), Structure of the atmosphere of Mars in summer at mid-latitudes, Journal of Geophysical Research, 82, 43644378.Google Scholar
Sekera, Z. (1957) Handbuch der Physik. Bd. 48. Berlin: Springer.Google Scholar
Smith, M. D. (2004) Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167, 148165.Google Scholar
Smith, M. D. (2008) Spacecraft observations of the Martian atmosphere, Annual Review of Earth and Planetary Sciences, 36, 191219.Google Scholar
Smith, M. D. (2009) THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202, 444452.Google Scholar
Smith, M. D., Conrath, B. J., Pearl, J. C., and Ustinov, E. A. (1996) Retrieval of Atmospheric Temperatures in the Martian Planetary Boundary Layer Using Upward-Looking Infrared Spectra, Icarus, 124: 586597.Google Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R. (2000) Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing, Journal of Geophysical Research, 105, 95399552.Google Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R. (2001) One Martian year of atmospheric observations by the Thermal Emission Spectrometer, Geophysical Research Letters, 28, 42634266.Google Scholar
Smith, M. D., Wolff, M. J., Spanovich, N., et al. (2006) One Martian year of atmospheric observations using MER Mini-TES, Journal of Geophysical Research (Planets) 111.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., and Murchie, S. L. (2009) Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide, Journal of Geophysical Research (Planets), 114.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., Kleinböhl, A., and Murchie, S. L. (2013) Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations, Journal of Geophysical Research (Planets), 118, 321334.Google Scholar
Smith, P. H. and Lemmon, M. (1999) Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder, Journal of Geophysical Research, 104, 89758986.Google Scholar
Sneep, M. and Ubachs, W. (2005) Direct measurement of the Rayleigh scattering cross section in various gases, Journal of Quantitative Spectroscopy and Radiative Transfer, 92, 293310.Google Scholar
Snook, K. J. (1999) Optical properties and radiative heating effects of dust suspended in the Mars atmosphere, Ph.D. thesis, Stanford University, Stanford, California.Google Scholar
Sobouti, Y. (1962) Fluorescent scattering in planetary atmospheres. II. Coupling among transitions, Astrophysical Journal, 135, 938.Google Scholar
Soderblom, J. M., Bell III, J. F., Johnson, J. R., Joseph, J., and Wolff, M. J. (2008) Mars Exploration Rover Navigation Camera in-flight calibration, Journal of Geophysical Research (Planets), 113, E03S19.Google Scholar
Sonnabend, G., Sornig, M., Krôtz, P. J., et al. (2006) High spatial resolution mapping of Mars mesospheric zonal winds by infrared heterodyne spectroscopy of CO2, Geophysical Research Letters, 33, 18201.Google Scholar
Sornig, M., Livengood, T., Sonnabend, G., et al. (2008) Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at 10 µm wavelength, Planetary and Space Science, 56, 13991406.Google Scholar
Spiga, A., Forget, F., Madeleine, J.-B., et al. (2011) The impact of Martian mesoscale winds on surface temperature and on the determination of thermal inertia, Icarus, 212, 504519.Google Scholar
Spiga, A., González-Galindo, F., López-Valverde, M.-A., and Forget, F. (2012) Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere, Geophysical Research Letters, 39, 02201.Google Scholar
Spiga, A., Fure, J., Madeleine, J.-P., Määtänen, A., and Forget, F. (2013) Rocket dust storms and detached dust layers in the Martian atmosphere, J. Geophys. Res., 118, 746767.Google Scholar
Spurr, R. J. D. (2006) VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media, Journal of Quantitative Spectroscopy and Radiative Transfer, 102, 316342.Google Scholar
Stamnes, K., Tsay, S.-C., Jayaweera, K., and Wiscombe, W. (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Applied Optics, 27, 25022509.CrossRefGoogle ScholarPubMed
Steele, L. J., Lewis, S. R., and Patel, M. R. (2014) The radiative impact of water ice clouds from a reanalysis of Mars Climate Sounder data, Geophysical Research Letters, 41, 44714478.Google Scholar
Stepanova, G. I. and Shved, G. M. (1985) Radiation transfer in the 4.3 µm CO2 band and the 4.7 µm CO band in the atmospheres of Venus and Mars with violation of LTE – populations of vibrational states, Soviet Astronomy, 29, 422.Google Scholar
Stewart, A. I. (1972) Mariner 6 and 7 ultraviolet spectrometer experiment: implications of CO2+, CO, and O airglow, Journal of Geophysical Research, 77, 5468.Google Scholar
Strong, J. and Plass, G. N. (1950) The effect of pressure broadening of spectral lines on atmospheric temperature, Astrophysical Journal, 112, 365379.Google Scholar
Strutt, J. W. (Lord Rayleigh, ) (1871) On the light from the sky, its polarization and colour, Philosophical Magazine, 41, 447454.Google Scholar
Strutt, J. W. (Lord Rayleigh, ) (1899) On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Philosophical Magazine 47, 375384. Reprinted in: Lord Rayleigh, Scientific papers, Part IV, New York: Dover Publications, 1964, 397.Google Scholar
Takahashi, Y. O., Fujiwara, H., and Fukunishi, H. (2006) Vertical and latitudinal structure of the migrating diurnal tide in the Martian atmosphere: numerical investigations, Journal of Geophysical Research (Planets), 111, 01003.Google Scholar
Tamppari, L. K., Bass, D., Cantor, B., et al. (2010) Phoenix and MRO coordinated atmospheric measurements, Journal of Geophysical Research (Planets), 115, E00E17.Google Scholar
Thomas, G. E. and Stamnes, K. (2002) Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press.Google Scholar
Thorpe, T. E. (1979) A history of Mars atmospheric opacity in the southern hemisphere during the Viking extended mission, Journal of Geophysical Research, 84, 66636683.Google Scholar
Thorpe, T. E. (1981) Mars atmospheric opacity effects observed in the Northern Hemisphere by Viking Orbiter imaging, Journal of Geophysical Research, 86, 1141911429.Google Scholar
Thuillier, G., Floyd, L., Woods, T. N., et al. (2004) Solar irradiance reference spectra for two solar active levels, Advances in Space Research, 34, 256261, 2004.Google Scholar
Titov, D. V. and Haus, R. (1997) A fast and accurate method of calculation of gaseous transmission functions in planetary atmospheres, Planetary and Space Science, 45, 369377.Google Scholar
Titov, D. V., Fedorova, A. A., and Haus, R. (2000) A new method of remote sounding of the Martian aerosols by means of spectroscopy in the 2.7 µm CO2 band, Planetary and Space Science, 48, 6774.Google Scholar
Toigo, A. D. and Richardson, M. I., et al (2000) Seasonal variation of aerosols in the Martian atmosphere, Journal of Geophysical Research, 105, 41094122.Google Scholar
Toigo, A. D., Smith, M. D., Seelos, F. P., and Murchie, S. L. (2013) High spatial and temporal resolution sampling of Martian gas abundances from CRISM spectra, Journal of Geophysical Research (Planets), 118, 89104.Google Scholar
Tomasko, M. G., Doose, L. R., Lemmon, M., et al. (1999) Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder, Journal of Geophysical Research, 104, 89879008.Google Scholar
Toon, O. B. and Ackerman, T. P. (1981) Algorithms for the calculation of scattering by stratified spheres, Applied Optics, 20, 36573660.Google Scholar
Toon, O. B., Pollack, J. B., and Sagan, C. (1977) Physical properties of the particles composing the Martian dust storm of 1971–1972, Icarus, 30, 663696.Google Scholar
Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K. (1989) Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, Journal of Geophysical Research, 94, 1628716301.Google Scholar
Toon, O. B., Tolbert, M. A., Koehler, B. G., et al. (1994) Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates, Journal of Geophysical Research, 99, 25631.Google Scholar
Trenberth, K. E., Fasullo, J. T., and Kiehl, J. (2009) Earth’s global energy budget, Bull. Amer. Meteor. Soc., 90, 311323.Google Scholar
Ueno, S. (1960) The Probabilistic Method for Problems of Radiative Transfer. X. Diffuse Reflection and Transmission in a Finite Inhomogeneous Atmosphere, Astrophysical Journal, 132, 729.Google Scholar
Ueno, S., Kagiwada, H., and Kalaba, R. (1971) Radiative transfer in spherical shell atmospheres with radial symmetry, Journal of Mathematical Physics, 12, 12791286.Google Scholar
Ustinov, E. A. (2005) Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres in thermal spectral region: general adjoint approach, Journal of Quantitative Spectroscopy and Radiative Transfer, 92, 351371.Google Scholar
Ustinov, E. A. (2007) Passive remote sensing of planetary atmospheres and retrievals of atmospheric macro- and microphysical parameters, Journal of Quantitative Spectroscopy and Radiative Transfer, 103, 217230.Google Scholar
van de Hulst, H. C., (1945) Theory of absorption lines in the atmosphere of the Earth, Ann. Rev. Astrophys., 1.Google Scholar
van de Hulst, H. C. (1957) Light Scattering by Small Particles, New York: John Wiley.Google Scholar
Vincendon, M. and Langevin, Y. (2010) A spherical Monte-Carlo model of aerosols: validation and first applications to Mars and Titan, Icarus, 207, 923931.Google Scholar
Vincendon, M., Langevin, Y., Poulet, F., Bibring, J.-P., and Gondet, B. (2007) Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte Carlo approach: application to the OMEGA observations of high-latitude regions of Mars, Journal of Geophysical Research (Planets), 112, E08S13.Google Scholar
Vincendon, M., Langevin, Y., Poulet, F., et al. (2008) Dust aerosols above the south polar cap of Mars as seen by OMEGA, Icarus, 196, 488505.Google Scholar
Vincendon, M., Langevin, Y., Poulet, F., et al. (2009) Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: constraints on aerosols properties and dust deposits, Icarus, 200, 395405.Google Scholar
Warren, S. G. (1984) Optical constants of ice from the ultraviolet to the microwave, Applied Optics, 23, 12061225.Google Scholar
Warren, S. G. (1986) Optical constants of carbon dioxide ice, Appl. Opt., 25, 26502674.Google Scholar
Warren, S. G. and Brandt, R. E. (2008) Optical constants of ice from the ultraviolet to the microwave: a revised compilation, Journal of Geophysical Research (Atmospheres), 113, 14220.Google Scholar
Waterman, P. C. (1971) Symmetry, unitarity, and geometry in electromagnetic scattering, Physical Review D, 3, 825839.Google Scholar
Wehrbein, W. M., Hord, C. W., and Barth, C. A. (1979) Mariner 9 ultraviolet spectrometer experiment – vertical distribution of ozone on Mars, Icarus, 38, 288299.Google Scholar
Wehrli, C. (1985) Extraterrestrial Solar Spectrum, Publication no. 615, Physikalisch-Meteorologisches Observatorium & World Radiation Center (PMO/WRC), Davos Dorf, Switzerland, July.Google Scholar
Wehrli, C. (1986) Solar Spectral Irradiance, World Climate Research Programme, Pub. Ser. No. 7, WMO ITD, No. 149, World Radiation Center, Davos-Dorf, Switzerland, 119126.Google Scholar
Wells, R. J. (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives, Journal of Quantitative Spectroscopy and Radiative Transfer, 62, 2948.Google Scholar
West, R., Crisp, D., and Chen, L. (1990) Mapping transformations for broadband atmospheric radiation calculations, Journal of Quantitative Spectroscopy and Radiative Transfer, 43, 191199.Google Scholar
West, R., Goody, R., Chen, L., and Crisp, D. (2010) The correlated-k method and related methods for broadband radiation calculations, Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 16721673.Google Scholar
Whiteway, J. A., Komguem, L., Dickinson, C., et al. (2009) Mars water-ice clouds and precipitation, Science, 325, 68.Google Scholar
Wilson, R. J. (1997) A general circulation model simulation of the Martian polar warming, Geophysical Research Letters, 24, 123126.Google Scholar
Wilson, R. J. and Guzewich, S. D. (2014) Influence of water ice clouds on nighttime tropical temperature structure as seen by the Mars Climate Sounder, Geophys. Res. Lett., 41, doi:10.1002/2014GL060082.Google Scholar
Wilson, R. J. and Hamilton, K. (1996) Comprehensive Model Simulation of Thermal Tides in the Martian Atmosphere, Journal of Atmospheric Sciences, 53, 12901326.Google Scholar
Wilson, R. J., Neumann, G., and Smith, M. D. (2007), The diurnal variation and radiative influence of Martian water ice clouds, Geophys. Res. Lett., 34, L02710.Google Scholar
Wilson, R. J., Haberle, R. M., Noble, J., et al. (2008a) Simulation of the 2001 Planet-encircling Dust Storm with the NASA/NOAA Mars General Circulation Model in Third International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, 1447, 9023.Google Scholar
Wilson, R. J., Lewis, S. R., and Montabone, L. (2008b) Influence of water ice clouds on Martian tropical atmospheric temperatures, Geophys. Res. Lett., 35, L07202.Google Scholar
Wilson, R. J., Millour, E., Navarro, T., Forget, F., and Kahre, M. A. (2014) GCM simulations of aphelion season tropical cloud and temperature structure, in Mars Atmosphere: Modeling and Observations, 5th International Workshop, Oxford, UK.Google Scholar
Wiscombe, W. J. and Joseph, J. H. (1977) The range of validity of the Eddington approximation, Icarus 32, 362377.Google Scholar
Wolff, M. J. and Clancy, R. T. (2003) Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations, Journal of Geophysical Research (Planets), 108, 5097.Google Scholar
Wolff, M. J., Smith, M. D., Clancy, R. T., et al. (2006) Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES, Journal of Geophysical Research (Planets), 111, E12S17.Google Scholar
Wolff, M. J., Smith, M. D., Clancy, R. T., et al. (2009) Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer, Journal of Geophysical Research (Planets), 114, E00D04.Google Scholar
Wolff, M. J., Clancy, R. T., Goguen, J. D., Malin, M. C., and Cantor, B. A. (2010) Ultraviolet dust aerosol properties as observed by MARCI, Icarus, 208, 143155.Google Scholar
Wolff, M. J., Clancy, R. T., Cantor, B., Madeleine, J.-B., and Millour, E. (2011 ) Mapping water ice clouds (and ozone) with MRO/MARCI, in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observation, 8–11 February, Paris, France, 213216.Google Scholar
Wolff, M. J., Clancy, R. T., Smith, M. D., et al. (2012) Vertical profiles of aerosol particle sizes using MGS/TES and MRO/MCS, Fall Meeting of American Geophysical Union, Abstract, P04.Google Scholar
Wolff, M. J., Clancy, R. T., Cantor, B., and Haberle, R. M. (2014) The MARCI water ice cloud optical depth (public) database, in The Fifth International Workshop on the Mars Atmosphere: Modeling and Observations, Oxford, UK, January 13–16.Google Scholar
Woods, T. N., Chamberlin, P. C., Harder, J. W., et al. (2009) Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI), Geophysical Research Letters, 36, 1101.Google Scholar
Wordsworth, R., Forget, F., Millour, E., Head, J. W., et al. (2013) Madeleine and B. Charnay, Global modeling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution, Icarus, 222, 119.Google Scholar
Wriedt, T. and Hellmers, J. (2008) New Scattering Information Portal for the light-scattering community, Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 15361542.Google Scholar
Yang, P. and Liou, K. N. (1996) Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space, Journal of the Optical Society of America A, 13, 20722085.Google Scholar
Yang, P., Liou, K. N., Mishchenko, M. I., and Gao, B.-C. (2000) Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols, Applied Optics, 39, 37273737.Google Scholar
Yang, P., Baum, B. A., Heymsfield, A., et al. (2003) Single scattering properties of droxtals, Journal of Quantitative Spectroscopy and Radiative Transfer, 79, 1159.Google Scholar
Yee, K. (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 302307.Google Scholar
Yoshino, K., Esmond, J. R., Sun, Y., et al. (1996) Absorption cross section measurements of carbon dioxide in the wavelength region 118.7–175.5 nm and the temperature dependence, Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 5360.Google Scholar
Zorzano, M.-P., Mateo-Martí, E., Prieto-Ballesteros, O., Osuna, S. and Rennó, N. (2009) Stability of liquid saline water on present day Mars, Geophysical Research Letters, 36, 20201.Google Scholar
Zurek, R.W. (1981) Inference of dust opacities for the 1977 Martian great dust storms from Viking Lander 1 pressure data, Icarus, 45, 202215.Google Scholar
Zurek, R. W. (1982) Martian great dust storms – an update, Icarus, 50, 288310.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×