Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T11:30:12.387Z Has data issue: false hasContentIssue false

Prey fractionation in the Archaeocyatha and its implication for the ecology of the first animal reef systems

Published online by Cambridge University Press:  18 October 2019

Jonathan B. Antcliffe
Affiliation:
Oxford University Department of Zoology, South Parks Road, Oxford, U.K.; and Université de Lausanne, Institut des Sciences de la Terre, Bâtiment Géopolis, UNIL–Mouline, CH-1015 Lausanne, Switzerland. E-mail: jonathan.antcliffe@unil.ch, Allison.daley@unil.ch
William Jessop
Affiliation:
Oxford University Department of Zoology, South Parks Road, Oxford, U.K. E-mail: will.m.jessop@gmail.com
Allison C. Daley
Affiliation:
Oxford University Department of Zoology, South Parks Road, Oxford, U.K.; and Université de Lausanne, Institut des Sciences de la Terre, Bâtiment Géopolis, UNIL–Mouline, CH-1015 Lausanne, Switzerland. E-mail: jonathan.antcliffe@unil.ch, Allison.daley@unil.ch

Abstract

Archaeocyaths are the most abundant sponges from the Cambrian period, having formed the first animal reef communities more than 500 million years ago. The Archaeocyatha are index fossils for correlating rocks of similar ages globally because of their abundance, extensive geographic distribution, detailed anatomy, and well-established taxonomy. Their ecological significance remains incompletely explored, yet they are known to have strongly competitively interacted, unlike modern sponges. This study examines the feeding ecology of the fossil remains of Siberian archaeocyath assemblages. As suspension feeders, archaeocyaths filtered plankton from the water column through pores in their outer wall. Here we outline a new method to estimate the limit on the upper size of plankton that could be consumed by an archaeocyath during life. The archaeocyaths examined were predominantly feeding on nanoplankton and microplankton such as phytoplankton and protozooplankton. Size-frequency distributions of pore sizes from six different Siberian archaeocyath assemblages, ranging from Tommotian to Botoman in age, reveal significantly different upper limits to the prey consumed at each locality. Some of the assemblages contain specimens that could have fed on larger organisms extending into the mesoplankton, including micro-invertebrates as a possible food resource. These results show that during the establishment of the first animal reef systems, prey partitioning was established as a way of reducing competition. This method has applicability for understanding the construction and the functioning of the first reef systems, as well as helping to understand modern reef systems and their development though time and space.

Type
Articles
Copyright
Copyright © The Paleontological Society. All rights reserved 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.0r17c1m

References

Literature Cited

Antcliffe, J. B. 2013. Questioning the evidence of organic compounds called sponge biomarkers. Palaeontology 56:917925.Google Scholar
Antcliffe, J. B. 2015. The oldest compelling evidence for sponges is still early Cambrian in age—reply to Love and Summons (2015). Palaeontology 58:11371139.Google Scholar
Antcliffe, J. B., Callow, R. H., and Brasier, M. D.. 2014. Giving the early fossil record of sponges a squeeze. Biological Reviews 89:9721004.Google Scholar
Balsam, W. L., and Vogel, S.. 1973. Water movement in archaeocyathids: evidence and implications of passive flow in models. Journal of Paleontology 47:979984.Google Scholar
Bannister, R., Battershill, C., and De Nys, R.. 2012. Suspended sediment grain size and mineralogy across the continental shelf of the Great Barrier Reef: impacts on the physiology of a coral reef sponge. Continental Shelf Research 32:8695.Google Scholar
Bell, J. J., McGrath, E., Biggerstaff, A., Bates, T., Bennett, H., Marlow, J., and Shaffer, M.. 2015. Sediment impacts on marine sponges. Marine Pollution Bulletin 94(1–2):513.Google Scholar
Bergquist, P. R. 1978. Sponges. University of California Press, Berkeley.Google Scholar
Brasier, M. 1976. Early Cambrian intergrowths of archaeocyathids, Renalcis, and pseudostromatolites from South Australia. Palaeontology 19:223245.Google Scholar
Brasier, M. 1991. Nutrient flux and the evolutionary explosion across the Precambrian-Cambrian boundary interval. Historical Biology 5(2–4):8593.Google Scholar
Brasier, M. D., Corfield, R. M., Derry, L. A., Rozanov, A. Y., and Zhuravlev, A. Y.. 1994. Multiple Delta-13c excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology 22:455458.Google Scholar
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic–Phanerozoic transition. Paleobiology 23:247262.Google Scholar
Carrera, M. G., and Botting, J. P.. 2008. Evolutionary history of Cambrian spiculate sponges: implications for the Cambrian evolutionary fauna. Palaios 23:124138.Google Scholar
Conover, R. J. 1981. Nutritional strategies for feeding on small suspended particles. Pp. 363395 in Longhurst, A. R., ed. Analysis of Marine Ecosystems. Academic, New York.Google Scholar
Cordie, D. R., and Dornbos, S. Q.. 2019. Restricted morphospace occupancy of early Cambrian reef-building archaeocyaths. Paleobiology 45:331346.Google Scholar
Cordie, D. R., Dornbos, S. Q., Marenco, P. J., Oji, T., and Gonchigdorj, S.. 2019. Depauperate skeletonized reef-dwelling fauna of the early Cambrian: insights from archaeocyathan reef ecosystems of western Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology 514:206221.Google Scholar
Daley, A. C., Antcliffe, J. B., Drage, H. B., and Pates, S.. 2018. Early fossil record of Euarthropoda and the Cambrian explosion. Proceedings of the National Academy of Sciences USA 115:53235331.Google Scholar
Debrenne, F. 2007. Lower Cambrian archaeocyathan bioconstructions. Comptes Rendus Palevol 6(1–2):519.Google Scholar
Debrenne, F., and Vacelet, J.. 1984. Archaeocyatha: is the sponge model consistent with their structural organisation? Palaeontographica Americana 54:358369.Google Scholar
Debrenne, F., and Zhuravlev, A. Y.. 1997. Cambrian food web: a brief review. Geobios 30:181188.Google Scholar
Debrenne, F., Zhuravlev, A. Y., and Rozanov, A. Y.. 1989. Pravilʹnye arkheot︠s︡iaty [Regular archaeocyaths]. Trudy Paleontologicheskiy Institut Akademiya Nauk, Moscow.Google Scholar
Debrenne, F., Zhuravlev, A. Y., and Kruse, P. D.. 2012. Part E (revised), vol. 4, chap. 18: General features of the Archaeocyatha. Treatise Online 38:1102.Google Scholar
Evitt, W. R. 1963. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. Proceedings of the National Academy of Sciences USA 49:298302.Google Scholar
Fernandez Araoz, N. C. 1991. Individual biomass, based on body measures, of copepod species considered as main forage items for fishes of the Argentine shelf. Oceanologica Acta 14:575580.Google Scholar
Gandin, A., and Debrenne, F.. 2010. Distribution of the archaeocyath–calcimicrobial bioconstructions on the Early Cambrian shelves. Palaeoworld 19:222241.Google Scholar
Gili, J.-M., and Coma, R.. 1998. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends in Ecology and Evolution 13:316321.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.. 2012. The geologic time scale 2012. Elsevier, Amsterdam.Google Scholar
Hammer, Ø., and Harper, D. A.. 2008. Paleontological data analysis. Wiley, Hoboken, N.J.Google Scholar
James, N. P., and Debrenne, F.. 1980. Lower Cambrian bioherms: pioneer reefs of the Phanerozoic. Acta Palaeontologica Polonica 25(3–4):655668.Google Scholar
James, N. P., and Gravestock, D. I.. 1990. Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia 1. Sedimentology 37:455480.Google Scholar
Kahn, A. S., Chu, J. W., and Leys, S. P.. 2018. Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia. Scientific Reports 8:756.Google Scholar
Khomentovskiy, V., and Repina, L.. 1965. The Lower Cambrian of the stratotype section of Siberia. Institut Geologii i Geofiziki 14. Akademia Nauk SSSR Sibirskoe Otdelenie, Moscow.Google Scholar
Kiessling, W. 2009. Geologic and biologic controls on the evolution of reefs. Annual Review of Ecology, Evolution, and Systematics 40:173192.Google Scholar
Kruse, P. D. 1982. Archaeocyathan biostratigraphy of the Gnalta Group at Mt. Wright, New South Wales. Palaeontographica Abteilung A 177:129212.Google Scholar
Kruse, P. D. 1990. Are archaeocyaths sponges, or are sponges archaeocyaths. In The Evolution of a late Precambrian–early Palaeozoic rift complex: the Adelaide Geosyncline. Geological Society of Australia Special Publication 16:310323.Google Scholar
Kruse, P. D., and Moreno-Eiris, E.. 2014. Archaeocyaths of the White Point Conglomerate, Kangaroo Island, South Australia. Alcheringa 38(1):164.Google Scholar
Kruse, P. D., Zhuravlev, A. Y., and James, N. P.. 1995. Primordial metazoan-calcimicrobial reefs: Tommotian (early Cambrian) of the Siberian platform. Palaios 10:291321.Google Scholar
Landing, E., Geyer, G., Brasier, M. D., and Bowring, S. A.. 2013. Cambrian evolutionary radiation: context, correlation, and chronostratigraphy—overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science Reviews 123:133172.Google Scholar
Landing, E., Antcliffe, J. B., Geyer, G., Kouchinsky, A., Bowser, S. S., and Andreas, A.. 2018. Early evolution of colonial animals (Ediacaran Evolutionary Radiation–Cambrian Evolutionary Radiation–Great Ordovician Biodiversification Interval). Earth Science Reviews 178:105135.Google Scholar
Lesser, M. P., Witman, J. D., and Sebnens, K.. 1994. Effects of flow and seston availability on scope for growth of benthic suspension-feeding invertebrates from the Gulf of Maine. Biological Bulletin 187:319335.Google Scholar
Leys, S. P., and Eerkes-Medrano, D. I.. 2006. Feeding in a calcareous sponge: particle uptake by pseudopodia. Biological Bulletin 211:157171.Google Scholar
Maas, A., Braun, A., Dong, X.-P., Donoghue, P. C., Müller, K. J., Olempska, E., Repetski, J. E., Siveter, D. J., Stein, M., and Waloszek, D.. 2006. The “Orsten”—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld 15:266282.Google Scholar
McKee, E. H. 1963. Ontogenetic stages of the archaeocyathid Ethmophyllum whitneyi Meek. Journal of Paleontology 37:287293.Google Scholar
Muscente, A., Michel, F. M., Dale, J. G., and Xiao, S.. 2015. Assessing the veracity of Precambrian “sponge” fossils using in situ nanoscale analytical techniques. Precambrian Research 263:142156.Google Scholar
Nettersheim, B. J., Brocks, J. J., Schwelm, A., Hope, J. M., Not, F., Lomas, M., Schmidt, C., Schiebel, R., Nowack, E. C. M., De Deckker, P., Pawlowski, J., Bowser, S. S., Bobrovskiy, I., Zonneveld, K., Kucera, M., Stuhr, M., and Hallmann, C.. 2019. Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals. Nature Ecology & Evolution 3:577581.Google Scholar
Omori, M., and Ikeda, T.. 1984. Methods in marine zooplankton ecology. Wiley, New York.Google Scholar
Peters, S. E., and Gaines, R. R.. 2012. Formation of the “Great Unconformity”as a trigger for the Cambrian explosion. Nature 484:363.Google Scholar
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Reiswig, H. 1973. Population dynamics of three Jamaican Demospongiae. Bulletin of Marine Science 23:191226.Google Scholar
Reiswig, H. M. 1971. Particle feeding in natural populations of three marine demosponges. The Biological Bulletin 141:568591.Google Scholar
Ribes, M., Coma, R., and Gili, J.-M.. 1999. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Marine Ecology Progress Series 176:179190.Google Scholar
Riisgaard, H. U., and Larsen, P. S.. 1995. Filter-feeding in marine macro-invertebrates: pump characteristics, modelling and energy cost. Biological Reviews 70:67106.Google Scholar
Riisgård, H. U., and Larsen, P. S.. 2010. Particle capture mechanisms in suspension-feeding invertebrates. Marine Ecology Progress Series 418:255293.Google Scholar
Rowland, S. M. 2001. Archaeocyaths—a history of phylogenetic interpretation. Journal of Paleontology 75:10651078.Google Scholar
Rowland, S. M., and Gangloff, R. A.. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios 3:111135.Google Scholar
Rozanov, A. Y., Khomentovskiy, V., Shabanov, Y. Y., Karlova, G., Varlamov, A., Luchinina, V., Demidenko, Y. E., Parkhaev, P. Y., Korovnikov, I., and Skorlotova, N.. 2008. To the problem of stage subdivision of the Lower Cambrian. Stratigraphy and Geological Correlation 16:119.Google Scholar
Savarese, M. 1992. Functional analysis of archaeocyathan skeletal morphology and its paleobiological implications. Paleobiology 18:464480.Google Scholar
Senowbari-Daryan, B., and García-Bellido, D. C.. 2002. Fossil “Sphinctozoa”: chambered sponges (polyphyletic). Pp. 15111538 in Hooper, J. N. A., Van Soest, R. W. M., and Willenz, P., eds. Systema porifera. Springer, Boston.Google Scholar
Servais, T., Owen, A. W., Harper, D. A., Kröger, B., and Munnecke, A.. 2010. The great Ordovician biodiversification event (GOBE): the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology 294:99119.Google Scholar
Shea, K., and Chesson, P.. 2002. Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution 17:170176.Google Scholar
Sieburth, J. M., Smetacek, V., and Lenz, J.. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions 1. Limnology and Oceanography 23:12561263.Google Scholar
Skorlotova, N. A. 2013. New archaeocyatha from the Atdabanian Stage of the Siberian Platform. Paleontologicheskiy Zhurnal 47:555561.Google Scholar
Surge, D. M., Savarese, M., Dodd, J. Robert, and Lohmann, K. C.. 1997. Carbon isotopic evidence for photosynthesis in Early Cambrian oceans. Geology 25:503506.Google Scholar
Vacelet, J. 1977. Une nouvelle relique du Secondaire: un représentant actuel des éponges fossiles Sphinctozoaires. Comptes rendus de l'Académie des Sciences 285:509511.Google Scholar
Vacelet, J. 2006. New carnivorous sponges (Porifera, Poecilosclerida) collected from manned submersibles in the deep Pacific. Zoological Journal of the Linnean Society 148:553584.Google Scholar
Vacelet, J., and Boury-Esnault, N.. 1995. Carnivorous sponges. Nature 373:333335.Google Scholar
Visser, A. W., and Jonsson, P. R.. 2000. On the reorientation of non-spherical prey particles in a feeding current. Journal of Plankton Research 22:761777.Google Scholar
Wolfe, J. M., Daley, A. C., Legg, D. A., and Edgecombe, G. D.. 2016. Fossil calibrations for the arthropod Tree of Life. Earth-Science Reviews 160:43110.Google Scholar
Wood, R. 1999. Reef evolution. Oxford University Press, New York.Google Scholar
Wood, R., Zhuravlev, A. Y., and Debrenne, F.. 1992. Functional biology and ecology of Archaeocyatha. Palaios 7:131156.Google Scholar
Wood, R., Zhuravlev, A. Y., and Chimed-Tseren, A.. 1993. The ecology of Lower Cambrian buildups from Zuune Arts, Mongolia: implications for early metazoan reef evolution. Sedimentology 40:829858.Google Scholar
Wörheide, G., and Reitner, J.. 1996. “Living fossil” sphinctozoan coralline sponge colonies in shallow water caves of the Osprey Reef (Coral Sea) and the Astrolabe Reefs (Fiji Islands). Pp. 145148 in Reitner, J., Neuweiler, F., and Gunkel, F., eds. Global and regional controls on biogenic sedimentation, Vol. 1. Reef evolution. Research reports. Geologisch-Paläontologisches Institut der Georg-August-Universität, Göttingen, Germany.Google Scholar
Wulff, J. 2012. Ecological interactions and the distribution, abundance, and diversity of sponges. Advances in Marine Biology 61:273344. Elsevier, Amsterdam.Google Scholar
Wulff, J. L. 2006. Ecological interactions of marine sponges. Canadian Journal of Zoology 84:146166.Google Scholar
Zhang, X.-g., Siveter, D. J., Waloszek, D., and Maas, A.. 2007. An epipodite-bearing crown-group crustacean from the Lower Cambrian. Nature 449:595.Google Scholar
Zhang, X.-g., Maas, A., Haug, J. T., Siveter, D. J., and Waloszek, D.. 2010. A eucrustacean metanauplius from the Lower Cambrian. Current Biology 20:10751079.Google Scholar
Zhao, F., Hu, S., Caron, J.-B., Zhu, M., Yin, Z., and Lu, M.. 2012. Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang biota, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 346:5465.Google Scholar
Zhuravlev, A. Y., Naimark, E. B., and Wood, R. A.. 2015. Controls on the diversity and structure of earliest metazoan communities: early Cambrian reefs from Siberia. Earth Science Reviews 147:1829.Google Scholar