Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T06:32:51.829Z Has data issue: false hasContentIssue false

A new catostomid fish (Ostariophysi, Cypriniformes) from the Eocene Kishenehn Formation and remarks on the North American species of †Amyzon Cope, 1872

Published online by Cambridge University Press:  13 June 2016

Juan Liu
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada 〈juan.liu@ualberta.ca〉, 〈mark.wilson@ualberta.ca〉, 〈ammurray@ualberta.ca〉
Mark V.H. Wilson
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada 〈juan.liu@ualberta.ca〉, 〈mark.wilson@ualberta.ca〉, 〈ammurray@ualberta.ca〉
Alison M. Murray
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada 〈juan.liu@ualberta.ca〉, 〈mark.wilson@ualberta.ca〉, 〈ammurray@ualberta.ca〉

Abstract

Fossil catostomids were very rare prior to the Eocene. After the Eocene, they suddenly decreased in diversity in Asia while becoming common fishes in the North American fauna. Knowledge of the taxonomy, diversity, and distribution of Eocene catostomids is critical to understanding the evolution of this fish group. We herein describe a new catostomid species of the genus †Amyzon Cope, 1872 from the Eocene Kishenehn Formation in Montana, USA. The new species, †Amyzon kishenehnicum, differs from known species of †Amyzon in having hypurals 2 and 3 consistently fused to the compound centrum proximally, and differs from other Eocene catostomids in that the pelvic bone is intermediately forked. All our phylogenetic analyses suggest that the new species is the sister group of †A. aggregatum Wilson, 1977 and that †Amyzon is the most basal clade of the Catostomidae. We reassessed the osteological characters of the North American species of †Amyzon from a large number of well-preserved specimens of the new species, as well as †A. gosiutense Grande et al., 1982 and †A. aggregatum. Osteological characters newly discovered indicate that †A. gosiutense is not a junior synonym of †A. aggregatum, but should be retained as a distinct species.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, L.A., 1940, Some characteristic otoliths of American Ostariophysi: Journal of Morphology, v. 66(3), p. 497527.Google Scholar
Bird, N.C., and Hernandez, L.P., 2007, Morphological variation in the Weberian apparatus of Cypriniformes: Journal of Morphology, v. 268(9), p. 739757.Google Scholar
Bleeker, P., 1860, Conspectus systematis Cyprinorum: Natuurkundig tijdschrift voor Nederlandsch Indië / uitgegeven door de Natuurkundige Vereeniging in Nederlandsch Indië, v. 20, p. 421441.Google Scholar
Bleeker, P., 1865, Notices sur quelques genres et espèces de Cyprinoïdes de Chine: Nederlandsch Tijdschrift voor de Dierkunde, v. 2, p. 1829.Google Scholar
Bonaparte, C.L., 1840, A new systematic arrangement of vertebrated animals: Transactions of the Linnean Society of London, v. 18(3), p. 247304.Google Scholar
Bruner, J.C., 1991, Comments on the genus Amyzon family Catostomidae: Journal of Paleontology, v. 65(4), p. 678686.Google Scholar
Chang, M.-M., and Chen, G., 2008, Fossil Cypriniformes from China and its adjacent areas and their palaeobiogeographical implications: Geological Society Special Publication, v. 295, p. 337350.Google Scholar
Chang, M.-M., Miao, D.S., Chen, Y.Y., Zhou, J.J., and Chen, P.F., 2001, Suckers (fish, Catostomidae) from the Eocene of China account for the family’s current disjunct distributions: Science in China Series D-Earth Sciences, v. 44(7), p. 577586.Google Scholar
Chen, W.-J., and Mayden, R.L., 2012, Phylogeny of suckers (Teleostei: Cypriniformes: Catostomidae): further evidence of relationships provided by the single-copy nuclear gene IRBP2: Zootaxa, v. 3586, p. 195210.Google Scholar
Cheng, C.C., 1962, Fossil fishes from the Early Tertiary of Hsiang-Hsiang, Hunan, with discussion of age of the Hsiawanpu Formation: Vertebrata PalAsiatica, v. 6, p. 333343.Google Scholar
Chu, Y.T., 1935, Comparative studies on the scales and on the pharyngeals and their teeth in Chinese cyprinids, with particular reference to taxonomy and evolution: Biological Bulletin of St. John’s University, v. 2, p. 1225.Google Scholar
Constenius, K.N., Dawson, M.R., Pierce, H.G., Walter, R.C., and Wilson, M.V.H., 1989, Reconnaissance paleontologic study of the Kishenehn Formation, northwestern Montana and southeastern British Columbia: Montana Geological Society Field Conference Guidebook, v. 1, p. 189203.Google Scholar
Cope, E.D., 1872, On the Tertiary coal and fossils of Osino, Nevada: Proceedings of the American Philosophical Society, v. 12(86), p. 478481.Google Scholar
Cope, E.D., 1874, Supplementary notices of fishes from the fresh-water Tertiaries of the Rocky Mountain: Bulletin of the U.S. Geological and Geographic Survey of the Territories, v. 1, p. 50.Google Scholar
Cope, E.D., 1875, On the fishes of the Tertiary shales of the South Park: Bulletin of the U.S. Geological and Geographical Survey of the Territories, v. 2, p. 45.Google Scholar
Cope, E.D., 1879, The fishes of the Klamath Lake, Oregon: American Naturalist, v. 13(12, 784785.Google Scholar
Cope, E.D., 1893, Fossil fishes from British Columbia: Natural Sciences of Philadelphia, v. 1893, p. 2.Google Scholar
Cuvier, G., and Valenciennes, A., 1844, Suite du livre dix-huitième. Cyprinoïdes: Paris, P. Bertrand, 497 p.Google Scholar
Doosey, M.H., and Bart, H.L. Jr., 2011, Morphological variation of the palatal organ and chewing pad of Catostomidae (Teleostei: Cypriniformes): Journal of Morphology, v. 272(9), p. 10921108.Google Scholar
Doosey, M.H., Bart, H.L. Jr, Saitoh, K., and Miya, M., 2010, Phylogenetic relationships of catostomid fishes (Actinopterygii: Cypriniformes) based on mitochondrial ND4/ND5 gene sequences: Molecular Phylogenetics and Evolution, v. 54(3), p. 10281034.Google Scholar
Eastman, J.T., 1977, The pharyngeal bones and teeth of catostomid fishes: American Midland Naturalist, v. 97(1), p. 6888.Google Scholar
Eastman, J.T., 1980, Caudal skeletons of catostomid fishes: American Midland Naturalist, v. 103(1), p. 133148.Google Scholar
Farris, J.S., 1989, Hennig86: a PC-DOS program for phylogenetic analysis: Cladistics, v. 5(2), p. 163.Google Scholar
Ferris, S.D., and Whitt, G.S., 1978, Phylogeny of tetraploid catostomid fishes based on the loss of duplicate gene expression: Systematic Zoology, v. 27(2), p. 189206.Google Scholar
Fink, S.V., and Fink, W.L., 1981, Interrelationships of the ostariophysan fishes (Teleostei): Zoological Journal of the Linnean Society, v. 72(4), p. 297353.Google Scholar
Forster, J.R., 1773, An account of some curious fishes, sent from Hudson’s Bay; in a letter to Thomas Pennant, Esq.: Philosophical Transactions of the Royal Society of London, B, Biological Sciences, v. 63, p. 149160.Google Scholar
Fuiman, L.A., 1985, Contributions of developmental characters to a phylogeny of catostomid fishes, with comments on heterochrony: Copeia, v. 1985(4), p. 833846.Google Scholar
Gill, T., 1861, On the classification of the Eventognathi or Cyprini, a suborder of Teleocephali: Proceedings of the American Philosophical Society, v. 13, p. 69.Google Scholar
Goloboff, P., Farris, S., and Nixon, K., 2000, TNT (Tree analysis using New Technology): Fundación Miguel Lillo, Tucumán, Argentina, http://www.lillo.org.ar/phylogeny/tnt/.Google Scholar
Grande, L., 1980, Paleontology of the Green River Formation, with a review of the fish fauna: Bulletin of the Geological Survery of Wyoming, v. 63, p. 1334.Google Scholar
Grande, L., Eastman, J.T., and Cavender, T.M., 1982, Amyzon gosiutensis, a new catostomid fish from the Green River Formation: Copeia, v. 1982(3), p. 523532.Google Scholar
Greenwalt, D.E., and Labandeira, C., 2014, The amazing fossil insects of the Eocene Kishenehn Formation in northwestern Montana: Rocks & Minerals, v. 88(5, 434441.Google Scholar
Greenwalt, D.E., and Rust, J., 2014, A new species of Pseudotettigonia Zeuner (Orthoptera: Tettigoniidae) with an intact stridulatory field and reexamination of the subfamily Pseudotettigoniinae: Systematic Entomology, v. 39(2, 256263.Google Scholar
Greenwalt, D.E., Goreva, Y.S., Siljeström, S.M., Rose, T., and Harbach, R.E., 2013, Hemoglobin-derived porphyrins preserved in a middle Eocene blood-engorged mosquito: Proceedings of the National Academy of Sciences, v. 110(46), p. 1849618500.Google Scholar
Greenwalt, D.E., Rose, T.R., Siljestrom, S.M., Goreva, Y.S., Constenius, K.N., and Wingerath, J.G., 2015, Taphonomic studies of the fossil insects of the middle Eocene Kishenehn Formation: Acta Palaeontologica Polonica, v. 60(4), p. 931947.Google Scholar
Grünbaum, T., Coutier, R., and Dumont, P., 2003, Congruence between chondrification and ossification sequences during caudal skeleton development: a Moxostomatini case study, in Browman, H.I., and Skriftesvik, A.B., eds., The Big Fish Bang: Proceedings of the 26th Annual Larval Fish Conference, Nordnes, Norway, Institute of Marine Research, p. 161–176.Google Scholar
Günther, A.C.L.G., 1868, Catalogue of the Physostomi, Containing the Families Heteropygii, Cyprinidae, Gonorhynchidae, Hyodontidae, Osteoglossidae, Clupeidae, Chirocentridae, Alepocephalidae, Notopteridae, Halosauridae in the Collection of the British Museum, London, Taylor & Francis, 512 p.Google Scholar
Harbach, R.E., and Greenwalt, D., 2012, Two Eocene species of Culiseta (Diptera: Culicidae) from the Kishenehn Formation in Montana: Zootaxa, v. 3554, p. 5858.Google Scholar
Harris, P.M., and Mayden, R.L., 2001, Phylogenetic relationships of major clades of Catostomidae (Teleostei: Cypriniformes) as inferred from mitochondrial SSU and LSU rDNA sequences: Molecular Phylogenetics and Evolution, v. 20(2), p. 225237.Google Scholar
Harris, P.M., Mayden, R.L., Espinosa Perez, H.S., and Garcia De Leon, F., 2002, Phylogenetic relationships of Moxostoma and Scartomyzon (Catostomidae) based on mitochondrial cytochrome b sequence data: Journal of Fish Biology, v. 61(6), p. 14331452.Google Scholar
Hernandez, L.P., Bird, N.C., and Staab, K.L., 2007, Using zebrafish to investigate cypriniform evolutionary novelties: Functional development and evolutionary diversification of the kinethmoid: Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, v. 308B(5), p. 625641.Google Scholar
Hilton, E.J., and Grande, L., 2008, Fossil mooneyes (Teleostei: Hiodontiformes, Hiodontidae) from the Eocene of western North America, with a reassessment of their taxonomy, In Cavin, L., Longbottom, A., and Richter, M., eds., Fishes and the Break-up of Pangaea, Geological Society Special Publications 295, Bath, UK, The Geological Society Publishing House, p. 221251.Google Scholar
Hubbs, C.L., 1930, Materials for a Revision of the Catostomid Fishes of Eastern North America, Ann Arbor, University of Michigan Museum of Zoology, 47 p.Google Scholar
Huber, J.T., and Greenwalt, D., 2011, Compression fossil Mymaridae (Hymenoptera) from Kishenehn oil shales, with description of two new genera and review of Tertiary amber genera: Zookeys, v. 130, p. 473494.Google Scholar
Hussakof, L., 1932, The fossil fishes collected by the Central Asiatic expedition: American Museum Novitates, v. 553, p. 119.Google Scholar
Jenkins, R.O., 1970, Systematic studies of the catostomid fish tribe Moxostomatini [Ph.D. thesis]: Ithaca, New York, Cornell University, 799 p.Google Scholar
Jordan, D.S., 1877, Contributions to North American ichthyology based primarily on the collections of the United States National Museum. No. 2. A.—Notes on Cottidae Cyprinidae, with revisions of the genera and descriptions of new or little known species: Bulletin of the United States National Museum, v. 10, p. 568.Google Scholar
Lacépède, B.G.É.D., 1803, Histoire Naturelle des Poissons 5, Paris, Plasson, 803 p.Google Scholar
Lesueur, C.A., 1817, A new genus of fishes, of the order Abdominales, proposed, under the name of Catostomus; and the characters of this genus, with those of its species, indicated: Journal of the Academy of Natural Sciences of Philadelphia, v. 1, p. 88102.Google Scholar
Li, G.Q., and Wilson, M.V.H., 1994, An Eocene species of Hiodon from Montana, its phylogenetic-relationships, and the evolution of the postcranial skeleton in the Hiodontidae (Teleostei): Journal of Vertebrate Paleontology, v. 14(2), p. 153167.Google Scholar
Liu, H.-T., 1957, A new fossil cyprinid fish from Maoming, Kwangtung: Vertebrata PalAsiatica, v. 1(2), p. 151153.Google Scholar
Liu, J., and Chang, M.-M., 2009, A new Eocene catostomid (Teleostei: Cypriniformes) from Northeastern China and early divergence of Catostomidae: Science in China Series D Earth Sciences, v. 52(2), p. 189202.Google Scholar
Liu, J., Chang, M.-M., and Wilson, M.V.H., 2010, The fossil catostomid Jianghanichthys from China and implications for the evolution of basal catostomids (Cypriniformes, Actinopterygii): Journal of Vertebrate Paleontology, v. 30(Supplement 2, Society of Vertebrate Paleontology Seventieth Anniversary Meeting), p. 123A.Google Scholar
Liu, J., Chang, M.-M., Wilson, M.V.H., and Murray, A.M., 2015, A new family of Cypriniformes (Teleostei, Ostariophysi) based on a redescription of †Jianghanichthys hubeiensis (Lei, 1977) from the Eocene Yangxi Formation of China: Journal of Vertebrate Paleontology, e1004073:23.Google Scholar
Maddison, W.P., and Maddison, D.R., 2011, Mesquite: a modular system for evolutionary analysis, version 2.75 (computer program): http://mesquiteproject.org.Google Scholar
Meng, Q., Su, J., and Miao, X., 1995, Systematics of fishes, Beijing, China Agriculture Press, 1158 p.Google Scholar
Miller, R.J., and Evans, H.E., 1965, External morphology of the brain and lips in catostomid fishes: Copeia, v. 1965(4), p. 467487.Google Scholar
Miller, R.R., 1959, Origin and affinities of the freshwater fish fauna of western North America, In Hubbs, C.L., ed., Zoogeography, Washington, D.C., American Association for the Advancement of Science, p. 187222.Google Scholar
Miller, R.R., and Smith, G.R., 1967, New fossil fishes from Plio-Pleistocene Lake Idaho: Occasional Papers of University of Michigan Museum of Zoology, v. 654, p. 124.Google Scholar
Miller, R.R., and Smith, G.R., 1981, Distribution and evolution of Chasmistes (Pisces: Catostomidae) in western North America: Occasional Papers of University of Michigan Museum of Zoology, v. 696, p. 146.Google Scholar
Mitchill, S.L., 1814, Report, in part of Samuel L. Mitchill, M.D., on the fishes of NewYork, New York, D. Carlisle, 28 p.Google Scholar
Müller, J., 1845, Über den Bau und die Grenzen der Ganoiden, und über das natürliche System der Fische: Archiv für Naturgeschichte, v. 11, p. 91141.Google Scholar
Nelson, E.M., 1948, The comparative morphology of the Weberian apparatus of the Catostomidae and its significance in systematics: Journal of Morphology, v. 83, p. 225251.Google Scholar
Nelson, E.M., 1949, The opercular series of the Catostomidae: International Bibliography, Information, Documentation, v. 85, p. 559567.Google ScholarPubMed
Nelson, J.S., 2006, Fishes of the World, Hoboken, New Jersey, John Wiley & Sons, Inc., 601 p.Google Scholar
Nelson, J.S., and Paetz, M.J., 1992, The Fishes of Alberta, Edmonton, The University of Alberta Press, 464 p.Google Scholar
Patterson, C., 1984, Chanoides, a marine Eocene otophysan fish (Teleostei: Ostariophysi): Journal of Vertebrate Paleontology, v. 4(3), p. 430456.Google Scholar
Patterson, C., and Johnson, G.D., 1995, The intermuscular bones and ligaments of teleostean fishes: Smithsonian Contributions to Zoology, v. 559, p. 176.Google Scholar
Rafinesque, C.S., 1818, Discoveries in natural history, made during a journey through the western region of the United States: American Monthly Magazine and Critical Review, v. 3(5), p. 354356.Google Scholar
Russell, L.S., 1954, Mammalian fauna of the Kishenehn Formation, southeastern British Columbia: Bulletin of the National Museum of Canada, v. 132, p. 92111.Google Scholar
Sagemehl, M., 1885, Beiträge zur vergleichenden Anatomie der Fische.III. Das Cranium der Characiniden nebst allgemeinen Bemerkungen über die mit einen Weber’schen Apparat versehenen Physostomenfamilien: Morphologisches Jahrbuch, v. 10, p. 1119.Google Scholar
Shockley, F.W., and Greenwalt, D., 2013, Ptenidium kishenehnicum (Coleoptera: Ptiliidae), a new fossil described from the Kishenehn oil shales, with a checklist of previously known fossil ptiliids: Proceedings of the Entomological Society of Washington, v. 115(2), p. 173181.Google Scholar
Smith, G.R., 1981, Late Cenozoic freshwater fishes of North America: Annual Review of Ecology and Systematics, v. 1981(12), p. 163193.Google Scholar
Smith, G.R., 1992, Phylogeny and biogeography of the Catostomidae, freshwater fishes of North America and Asia, In Mayden, R.L., ed., Systematics, Historical Ecology, and North American Freshwater Fishes, Stanford, Stanford University Press, p. 778826.Google Scholar
Smith, G.R., and Koehn, R.K., 1971, Phenetic and cladistic studies of biochemical and morphological characteristics of Catostomus: Systematic Zoology, v. 20(3), p. 282297.Google Scholar
Staab, K.L., and Hernandez, L.P., 2010, Development of the cypriniform protrusible jaw complex in Danio rerio: constructional insights for evolution: Journal of Morphology, v. 271(7), p. 814825.Google Scholar
Staab, K.L., Holzman, R., Hernandez, L.P., and Wainwright, P.C., 2012, Independently evolved upper jaw protrusion mechanisms show convergent hydrodynamic function in teleost fishes: Journal of Experimental Biology, v. 215(9), p. 14561463.Google Scholar
Swofford, D.L., 2003, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Sytchevskaya, E.K., 1986, Palaeogene freshwater fish fauna of the USSR and Mongolia: Sovmestnaya Sovetsko-Mongol’skaya Paleontologicheskaya Ekspeditsiya Trudy, p. 1154.Google Scholar
Unmack, P.J., Dowling, T.E., Laitinen, N.J., Secor, C.L., Mayden, R.L., Shiozawa, D.K., and Smith, G.R., 2014, Influence of introgression and geological processes on phylogenetic relationships of western North American Mountain Suckers (Pantosteus, Catostomidae): PLoS ONE, v. 9(3), e90061.Google Scholar
Weisel, G.F., 1960, The osteocranium of the catostomid fish, Catostomus macrocheilus. A study in adaptation and natural relationship: Journal of Morphology, v. 106(1), p. 109129.Google Scholar
Whipple, J.W., 1992, Geologic map of Glacier National Park, Montana: Miscellaneous Investigations Series Map, U.S. Geological Survey.Google Scholar
Wilson, M.V.H., 1974, Fossil fishes of the Tertiary of British Columbia [Ph.D. thesis]: Toronto, University of Toronto, 375 p.Google Scholar
Wilson, M.V.H., 1977, Middle Eocene freshwater fishes from British Columbia: Life Science Contribution Royal Ontario Museum, v. 113, p. 161.Google Scholar
Wilson, M.V.H., 1980a, Eocene lake environments: Depth and distance-from-shore variation in fish, insect, and plant assemblages: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 32, p. 2144.Google Scholar
Wilson, M.V.H., 1980b, Oldest known Esox (Pisces: Esocidae), part of a new Paleocene teleost fauna from Western Canada: Canadian Journal of Earth Sciences, v. 17, p. 307312.Google Scholar
Wilson, M.V.H., 1984, Year classes and sexual dimorphism in the Eocene catostomid fish Amyzon aggregatum: Journal of Vertebrate Paleontology, v. 3, p. 137142.Google Scholar
Zhou, J., 1990, The Cyprinidae fossils from middle Miocene of Shanwang Basin: Vertebrata PalAsiatica, v. 28(2), p. 95127.Google Scholar