Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T11:00:43.678Z Has data issue: false hasContentIssue false

Crocodilian diversity in space and time: the role of climate in paleoecology and its implication for understanding K/T extinctions

Published online by Cambridge University Press:  08 February 2016

Paul J. Markwick*
Affiliation:
Department of Meteorology and the Postgraduate Research Institute for Sedimentology, University of Reading, Reading RG6 6BB, United Kingdom.
*
Present address: Robertson Research International Ltd., Llanrhos, Llandudno, LL30 ISA, Wales, United Kingdom. E-mail: paul.markwick@which.net

Abstract

The taxonomic diversity of crocodilians (Crocodylia) through the last 100 million years shows a general decline in the number of genera and species to the present day. But this masks a more complex pattern. This is investigated here using a comprehensive database of fossil crocodilians that provides the opportunity to examine spatial and temporal trends, the influence of sampling, and the role of climate in regulating biodiversity.

Crown-group crocodilians, comprising the extant families Alligatoridae, Crocodylidae, and Gavialidae, show the following trend: an initial exponential diversification through the Late Cretaceous and Paleocene that is restricted to the Northern Hemisphere until after the K/T boundary; relatively constant diversity from the Paleocene into the middle Eocene that may be an artifact of sampling, which might mask an actual decline in numbers; low diversity during the late Eocene and Oligocene; a second exponential diversification during the Miocene and leveling off in the late Miocene and Pliocene; and a precipitous drop in the Pleistocene and Recent. The coincidence of drops in diversity with global cooling is suggestive of a causal link—during the initial glaciation of Antarctica in the Eocene and Oligocene and the Northern Hemisphere glaciation at the end of the Pliocene. However, matters are complicated in the Northern Hemisphere by the climatic effects of regional uplift.

Although the global trend of diversification is unperturbed at the K/T boundary, this is largely due to the exceptionally high rate of origination in the early Paleocene. Nonetheless, the survival of such a demonstrably climate-sensitive group strongly suggests that a climatic explanation for the K/T mass extinctions, especially the demise of the dinosaurs, must be reconsidered.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.CrossRefGoogle Scholar
Barrett, P. J., ed. 1986. Antarctic Cenozoic history from the MSSTS-1 drillhole, McMurdo Sound. DSIR Bulletin 237. Science Information Publishing Centre, Wellington.Google Scholar
Beaumont, M. E. de. 1836. On the temperature of the Earth's surface during the Tertiary Period. Edinburgh New Philosophical Journal 21:206209.Google Scholar
Benton, M. J. 1985. Patterns in the diversification of Mesozoic non-marine tetrapods and problems in historical diversity analysis. Special Papers in Palaeontology 33:185202.Google Scholar
Benton, M. J., and Clark, J. M. 1988. Archosaur phylogeny and the relationships of the Crocodylia. Pp. 295338in Benton, M. J., ed. The phylogeny and classification of the tetrapods, Vol. 1. Amphibians, reptiles, birds (Systematics Association Special Volume 35A). Clarendon, Oxford.Google Scholar
Berg, D. E. 1965. Krokodile als Klimazeugen. Geologische Rundshau 54:328333.CrossRefGoogle Scholar
Berggren, W. A., and Prothero, D. R. 1992. Eocene-Oligocene climatic and biotic evolution: an overview. Pp. 128in Prothero, and Berggren, 1992.Google Scholar
Birkenmajer, K. Jr., Soliani, E., and Kawashita, K. 1989. Geochronology of Tertiary glaciations on King George Island, West Antarctica. Bulletin of the Polish Academy of Sciences Earth Sciences 37:2748.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Buffetaut, E. 1982. Radiation évolutive, paléoecologie et biogéographie des crocodiliens mésosuchiens. Mémoires Société Géologique de France 142:188.Google Scholar
Carroll, R. L. 1988. Vertebrate paleontology and evolution. W. H. Freeman, New York.Google Scholar
Clark, J. M. 1986. Phylogenetic relationship of the crocodylomorph archosaurs. . University of Chicago, Chicago.Google Scholar
Clarke, A. 1993. Temperature and extinction in the sea: a physiologist's view. Paleobiology 19:499518.CrossRefGoogle Scholar
Colbert, E. H. 1991. Mesozoic and Cainozoic tetrapod fossils from Antarctica. Pp. 568587in Tingey, R. J., ed. The geology of Antarctica. Clarendon, Oxford.Google Scholar
Crowley, T. J., and North, G. R. 1991. Paleoclimatology. Oxford University Press, New York.Google Scholar
Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist 137:2749.CrossRefGoogle Scholar
Darlington, P. J. 1948. The geographical distribution of coldblooded vertebrates. Quarterly Review of Biology 23:126and 105–123.CrossRefGoogle Scholar
Donn, W. L. 1987. 20: Terrestrial climate change from the Triassic to Recent. Pp. 343352in Rampino, M. R., Sanders, J. E., Newman, W. S., and Königsson, L. K., eds. Climate: history, periodicity, and predictability. Van Nostrand Reinhold, New York.Google Scholar
Estes, R. 1970. Origin of the Recent North American lower vertebrate fauna: an inquiry into the fossil record. Forma et Functio 3:139163.Google Scholar
Fischer, A. G. 1961. Latitudinal variations in organic diversity. American Scientist 49:5074.Google Scholar
Frakes, L. A. 1979. Climates through geologic time. Elsevier, Amsterdam.Google Scholar
Habicht, J. K. A. 1979. Paleoclimate, paleomagnetism, and continental drift. AAPG Studies in Geology, Vol. 9. American Association of Petroleum Geologists, Tulsa, Okla.Google Scholar
Hambrey, M. J., Larsen, B., Ehrmann, W. U., and Party, O. L. S. S. 1989. Forty million years of Antarctic glacial history yielded by Leg 119 of the Ocean Drilling Program. Polar Record 25:99106.CrossRefGoogle Scholar
Hay, O. P. 1908. The fossil turtles of North America. Carnegie Institution of Washington Publication 75. Washington, D.C.Google Scholar
Holman, E. W. 1985. Gaps in the fossil record. Paleobiology 11:221226.CrossRefGoogle Scholar
Hutchison, J. H. 1982. Turtle, crocodilian, and champsosaur diversity changes in the Cenozoic of the north-central region of western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 37:149164.CrossRefGoogle Scholar
Hutchison, J. H. 1992. Western North American reptile and amphibian record across the Eocene/Oligocene boundary and its climatic implications. Pp. 451463in Prothero, and Berggren, 1992.Google Scholar
Iordansky, N. N. 1973. The skull of the Crocodilia. Pp. 201262in Gans, C., ed. Biology of the Reptilia, Vol. 4. Morphology D. Academic Press, London.Google Scholar
Jablonski, D. 1986. Causes and consequences of mass extinctions: a comparative approach. Pp. 183229in Elliott, D. K., ed. Dynamics of extinction. Wiley, New York.Google Scholar
Lieth, H., and Whittaker, R. H., eds. 1975. Primary productivity of the biosphere. Ecological Studies, Vol. 14. Springer, New York.CrossRefGoogle Scholar
Lyell, C. 1830. Principles of geology, being an attempt to explain the former changes of the earth's surface, by reference to causes now in operation, 1. John Murray, London.Google Scholar
Mackensen, A., and Ehrmann, W. U. 1992. Middle Eocene through early Oligocene climate history and paleoceanography in the Southern Ocean: stable oxygen and carbon isotopes from ODP Sites on Maud Rise and Kerguelen Plateau. Marine Geology 108:127.CrossRefGoogle Scholar
Markwick, P. J. 1993. Crocodilian diversity and distributional responses to climate changes over the last 100 Ma. Geological Society of America Abstracts with Programs 25(3):65.Google Scholar
Markwick, P. J. 1994a. Crocodilian distribution and diversity across the KT boundary event: mass extinction restricted-Tertiary boundary. Implications for climatically induced extinction. Geological Society of America Abstracts with Programs 26:A395.Google Scholar
Markwick, P. J. 1994b. “Equability”, continentality and Tertiary “climate”: the crocodilian perspective. Geology 22:613616.2.3.CO;2>CrossRefGoogle Scholar
Markwick, P. J. 1996. Late Cretaceous to Pleistocene climates: nature of the transition from a “hot-house” to an “ice-house” world. . University of Chicago, Chicago.Google Scholar
Markwick, P. J. 1998. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data for global change. Palaeogeography, Palaeoclimatology, Palaeoecology 137:205271.CrossRefGoogle Scholar
Maxwell, W. D., and Benton, M. J. 1990. Historical tests of the absolute completeness of the fossil record of tetrapods. Paleobiology 16:322335.CrossRefGoogle Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.CrossRefGoogle ScholarPubMed
Molnar, R. E. 1980. Procoelous crocodile from Lower Cretaceous of Lightning Ridge. Memoirs of the Queensland Museum 20:6575.Google Scholar
Molnar, R. E. 1982. A longirostrine crocodilian from Murua (Woodlark), Solomon Sea. Memoirs of the Queensland Museum 20:675685.Google Scholar
Owen, R. 1851. Monograph on the fossil Reptilia of the Cretaceous formations. Palaeontological Society, London.CrossRefGoogle Scholar
Parrish, J. M., Parrish, J. T., Hutchison, J. H., and Spicer, R. A. 1987. Late Cretaceous vertebrate fossils from the North Slope of Alaska and implications for dinosaur ecology. Palaios 2:377389.CrossRefGoogle Scholar
Paul, C. R. C. 1982. The adequacy of the fossil record. Pp. 75117in Joysey, K. A. and Friday, A. E., eds. Problems of phylogenetic reconstruction (Systematics Association Special Volume 21). Academic Press, London.Google Scholar
Paul, C. R. C. 1985. The adequacy of the fossil record reconsidered. Special Papers in Paleontology 33:715.Google Scholar
Pianka, E. R. 1966. Latitudinal gradients in species diversity: a review of concepts. American Naturalist 100(910):3346.CrossRefGoogle Scholar
Prentice, M. L., and Matthews, R. K. 1988. Cenozoic ice-volume history: development of a composite oxygen isotope record. Geology 16:963966.2.3.CO;2>CrossRefGoogle Scholar
Prothero, D. R., and Berggren, W. A. 1992. Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1:333342.CrossRefGoogle Scholar
Raup, D. M., and Jablonski, D. 1993. Geography of end-Cretaceous marine bivalve extinctions. Science 260:971973.CrossRefGoogle ScholarPubMed
Retallack, G. J. 1992. Paleosols and changes in climate and vegetation across the Eocene/Oligocene boundary. Pp. 382398in Prothero, and Berggren, 1992.Google Scholar
Rich, P. V., Rich, T. H., Wagstaff, B. E., Mason, J. M., Douthitt, C. B., Gregory, R. T., and Felton, E. A. 1988. Evidence for low temperatures and biologic diversity in Cretaceous high latitudes of Australia. Science 242:14031406.CrossRefGoogle ScholarPubMed
Rohde, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514527.CrossRefGoogle Scholar
Rohde, K. 1997. The larger area of the tropics does not explain latitudinal gradients in species diversity. Oikos 79:169172.CrossRefGoogle Scholar
Romer, A. S. 1971. Vertebrate paleontology. University of Chicago Press, Chicago.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Ross, C. A. 1989. Crocodiles and alligators. Facts on File, New York.Google Scholar
Roy, K. 1996. The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods. Paleobiology 22:436452.CrossRefGoogle Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 1994. Eastern Pacific molluscan provinces and latitudinal diversity gradient: no evidence for “Rapoport's rule.” Proceedings of the National Academy of Sciences USA 91:88718874.CrossRefGoogle ScholarPubMed
Schneider, S. H., and Thompson, S. L. 1988. Simulating the climatic effects of nuclear war. Nature 333:221227.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1991. Population biology models in macroevolution. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:136156. Paleontological Society, Knoxville, Tenn.Google Scholar
Sepkoski, J. J. Jr. 1996. Competition in macroevolution: the double wedge revisited. Pp. 211255in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology: essays in honor of James W. Valentine. University of Chicago Press, Chicago.Google Scholar
Spyglass, . 1990–1993. Spyglass Transform. Spyglass, Inc., Savoy, Ill.Google Scholar
Stanley, S. M. 1986. Anatomy of a recent regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:136.CrossRefGoogle Scholar
Steel, R. 1973. Crocodylia. Handbuch der Paläoherpetologie 16. Gustav Fischer, Stuttgart.Google Scholar
Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133:240256.CrossRefGoogle Scholar
Stucky, R. K. 1992. Mammalian faunas in North America of Bridgerian to early Arikareean “ages” (Eocene and Oligocene). Pp. 465493in Prothero, and Berggren, 1992.Google Scholar
Thomas, E. 1992. Middle Eocene-late Oligocene bathyal benthic foraminifera (Weddell Sea): faunal changes and implications for ocean circulation. Pp. 245271in Prothero, and Berggren, 1992.Google Scholar
Valentine, J. W. 1967. The influence of climatic fluctuations on species diversity within the tethyan provincial system. Pp. 153166in Adams, C. G. and Ager, D. V., eds. Aspects of Tethyan biogeography (Systematics Association Special Volume 7). Clarendon, Oxford.Google Scholar
Wing, S. L., and Sues, H.-D. 1992. Mesozoic and early Cenozoic terrestrial ecosystems. Pp. 327416in Behrensmeyer, A. K. et al., eds. Terrestrial ecosystems through time. Evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago.Google Scholar
Wolfe, J. A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. American Scientist 66:694703.Google Scholar
Wolfe, J. A. 1992. Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America. Pp. 421436in Prothero, and Berggren, 1992.Google Scholar
Wolfe, J. A. 1994. Tertiary climatic changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology 108:195205.CrossRefGoogle Scholar
Woodward, A. S. 1887. The history of fossil crocodiles. Proceedings of the Geological Association 9:288344.CrossRefGoogle Scholar
Zachos, J. C., Breza, J. R., and Wise, S. W. 1992. Early Oligocene ice-sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology 20:569573.2.3.CO;2>CrossRefGoogle Scholar