Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-10T07:57:07.411Z Has data issue: false hasContentIssue false

Herpetogaster from the early Cambrian of Nevada (Series 2, Stage 4) and its implications for the evolution of deuterostomes

Published online by Cambridge University Press:  29 May 2018

JULIEN KIMMIG*
Affiliation:
Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
RONALD C. MEYER
Affiliation:
352e Raintree Court, Louisville, CO 80027, USA
BRUCE S. LIEBERMAN
Affiliation:
Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
*
Author for correspondence: jkimmig@ku.edu

Abstract

The Pioche Formation of SE Nevada preserves a diverse soft-bodied fauna from the early and middle Cambrian (Series 2–3: Stage 4–5). While the fauna is dominated by arthropods, animals belonging to other taxa can be found. Here we document the first occurrence of Herpetogaster collinsi outside the Burgess Shale. Further, the specimens are from the Nephrolenellus multinodus biozone and thus represent the oldest occurrence of the species, as well as possibly the earliest soft-bodied deuterostomes in Laurentia.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azmi, R. J. & Pancholi, V. P. 1983. Early Cambrian (Tommotian) conodonts and other shelly microfauna from the upper Krol of the Mussoorie Syncline, Garhwal, Lesser Himalaya with remarks on the Precambrian–Cambrian Boundary. Himalayan Geology 11, 360–72.Google Scholar
Baliński, A., Sun, Y. & Dzik, J. 2012. 470-million-year-old black corals from China. Naturwissenschaften 99, 645–53.Google Scholar
Broce, J. S. & Schiffbauer, J. D. 2017. Taphonomic analysis of Cambrian vermiform fossils of Utah and Nevada, and implications for the chemistry of Burgess Shale-type preservation. PALAIOS 32, 600–19.Google Scholar
Brusca, R. C. & Brusca, G. J. 2003. Invertebrates, 2nd edn. Sunderland, Massachusetts: Sinauer.Google Scholar
Caron, J.-B., Conway Morris, S. & Shu, D. 2010. Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. PLoS ONE 5, 113.Google Scholar
Chen, J.-Y., Hou, X.-G. & Hao-Zhi, L. 1989. Early Cambrian hock glass-like rare animal Dinomischus and its ecological features. Acta Palaeontologica Sinica 28, 5871 (in Chinese with English summary).Google Scholar
Chen, J.-Y., Huang, D.-Y., Peng, Q.-Q., Chi, H.-M., Wang, X.-Q. & Feng, M. 2003. The first tunicate from the Early Cambrian of South China. Proceedings of the National Academy of Sciences 100, 8314–18.Google Scholar
Collins, D. & Rudkin, D. M. 1981. Priscansermatinus barnetti, a probable lepadomorph barnacle from the middle Cambrian Burgess Shale of British Columbia. Journal of Paleontology 55, 1006–15.Google Scholar
Conway Morris, S. 1977. A new entoproct-like organism from the Burgess Shale of British Columbia. Palaeontology 20, 833–45.Google Scholar
Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature 361, 219–25.Google Scholar
Conway Morris, S., Halgedahl, S. L., Selden, P. & Jarrard, R. D. 2015. Rare primitive deuterostomes from the Cambrian (Series 3) of Utah. Journal of Paleontology 89, 631–6.Google Scholar
Conway Morris, S. & Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Palaeontological Contributions 122, 148.Google Scholar
David, B., Lefebvre, B., Mooi, R. & Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Palaeobiology 26, 529–54.Google Scholar
Dohrmann, M. & Wörheide, G. 2017. Dating early animal evolution using phylogenomic data. Scientific Reports 7, 3599.Google Scholar
Durham, J. W. 1967. Notes on the Helicoplacoidea and early echinoderms. Journal of Paleontology 41, 97102.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D. & Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–7.Google Scholar
Gehling, J. G. 1987. Earliest known echinoderm – a new Ediacaran fossil from the Pound Subgroup of South Australia. Alcheringa 11, 337–45.Google Scholar
Grobben, K. 1908. Die systematische Einteilung des Tierreiches. Verhandlungen der kaiserlich-königlichen zoologisch-botanischen Gesellschaft in Wien 58, 491511.Google Scholar
Han, J., Conway Morris, S., Ou, Q., Shu, D. G. & Huang, H. 2017. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). Nature 542, 228–31.Google Scholar
Hintze, L. F. 1988. Geologic History of Utah; a Field Guide to Utah's Rocks. Provo, UT: Brigham Young University Department of Geology, Special Publication no. 7, p. 225.Google Scholar
Holmes, J. D., García-Bellido, D. C. & Lee, M. S. Y. 2018. Comparisons between Cambrian Lagerstätten assemblages using multivariate, parsimony and Bayesian methods. Gondwana Research 55, 3041.Google Scholar
Hou, X.-G., Siveter, D. J., Siveter, D. J., Aldridge, R. J., Cong, P.-Y., Gabbott, S. E., Ma, X.-Y., Purnell, M. A. & Williams, M. 2017. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life, 2nd edn. Oxford: Wiley-Blackwell.Google Scholar
Kimmig, J. & Pratt, B. R. 2016. Depositional environment and taphonomy of the middle Cambrian (Drumian) Ravens Throat River Lagerstätte, Rockslide Formation, northwestern Canada. Lethaia 49, 150–69.Google Scholar
Kimmig, J. & Strotz, L. C. 2017. Coprolites in middle Cambrian (Series 2–3) Burgess Shale-type deposits of Nevada and Utah and their ecological implications. Bulletin of Geosciences 92, 297309.Google Scholar
Kimmig, J., Strotz, L. C. & Lieberman, B. S. 2017. The stalked filter feeder Siphusauctum lloydguntheri n. sp. from the middle Cambrian (Series 3: Stage 5) Spence Shale of Utah: its biological affinities and taphonomy. Journal of Paleontology 91, 902–10.Google Scholar
Landing, E. 1974. Early and Middle Cambrian conodonts from the Taconic allochthon, eastern New York. Journal of Paleontology 48, 1241–8.Google Scholar
Lehnert, O., Miller, J. F. & Cochrane, K. 1999. Palaeobotryllus and friends: Cambro-Ordovician record of probable ascidian tunicates. Acta Universitatis Carolinae, Geologica 43, 447–50.Google Scholar
Lieberman, B. S. 2003. A new soft-bodied fauna: the Pioche Formation of Nevada. Journal of Paleontology 77, 674–90.Google Scholar
Lieberman, B. S., Kurkewicz, R., Shinogle, H., Kimmig, J. & MacGabhann, B. A. 2017. Disc-shaped fossils resembling porpitids (Cnidaria: Hydrozoa) from the early Cambrian (Series 2: Stage 4) of western U.S.A. PeerJ 5, e3312.Google Scholar
LoDuca, S. T., Caron, J.-B., Schiffbauer, J. D., Xiao, S. & Kramer, A. 2015. A reexamination of Yuknessia from the Cambrian of British Columbia and Utah. Journal of Paleontology 89, 8295.Google Scholar
Luo, H., Hu, S., Chen, L., Zhang, S. & Tao, Y. 1999. Early Cambrian Chengjiang Fauna from Kunming Region, China. Kunming: Yunnan Science and Technology Press.Google Scholar
MacGabhann, B. A. 2012. A solution to Darwin's dilemma: differential taphonomy of Ediacaran and Palaeozoic non-mineralised discoidal fossils. Ph.D. thesis, National University of Ireland, Galway, Ireland. Published thesis. Available at https://aran.library.nuigalway.ie/bitstream/handle/10379/3406/2012MacGabhannPhDvol1.pdf?sequence=9.Google Scholar
Mathur, V. K., Shome, S., Nath, S. & Babu, R. 2014. First record of metazoan eggs and embryos from early Cambrian Chert Member of Deo ka Tibba Formation, Tal Group, Uttarakhand Lesser Himalaya. Journal of the Geological Society of India 83, 191–7.Google Scholar
Metschnikoff, V. E. 1881. Über die systematische Stellung von Balanoglossus. Zoologischer Anzeiger 4, 139–57.Google Scholar
Moore, R. A. & Lieberman, B. S. 2009. Preservation of early and Middle Cambrian soft-bodied arthropods from the Pioche Shale, Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 5762.Google Scholar
Müller, K. J. 1977. Palaeobotryllus from the Upper Cambrian of Nevada – a probable ascidian. Lethaia 10, 107–18.Google Scholar
Novozhilov, N. I. 1960. Podklass Pseudocrustacea. In Osnovy Paleontologii, Arthropoda, Trilobitomorpha, and Crustacea (ed. Orlov, Y. A.). Moscow: Nedra, p. 199.Google Scholar
O'Brien, L. J. & Caron, J.-B. 2012. A new stalked filter-feeder from the middle Cambrian Burgess Shale, British Columbia, Canada. PLoS ONE 7, e29233.Google Scholar
Ortega-Hernández, J. 2016. Making sense of ‘lower’ and ‘upper’ stem-group Euarthropoda, with comments on the strict use of the name Arthropoda von Siebold, 1848. Biological Reviews 91, 255–73.Google Scholar
Palmer, A. R. 1998. Terminal Early Cambrian extinction of the Olenellina: documentation from the Pioche Formation, Nevada. Journal of Paleontology 72, 650–72.Google Scholar
Peng, J., Zhao, Y. & Lin, J.-P. 2006. Dinomischus from the middle Cambrian Kaili Biota, Guizhou, China. Acta Geologica Sinica 80, 498501.Google Scholar
Ruppert, E. E. & Barnes, R. D. 1993. Invertebrate Zoology, 6th edn. Pacific Grove, California: Brooks Cole.Google Scholar
Shu, D., Chen, L., Han, J. & Zhang, X. 2001 a. An early Cambrian tunicate from China. Nature 411, 472–73.Google Scholar
Shu, D.-G., Conway Morris, S., Han, J., Chen, L., Zhang, X.-L., Zhang, Z.-F., Liu, H.-Q., Li, Y. & Liu, J.-N. 2001 b. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature 414, 419–24.Google Scholar
Shu, D.-G., Conway Morris, S., Han, J., Zhang, Z.-F. & Liu, J.-N. 2004. Ancestral echinoderms from the Chengjiang deposits of China. Nature 430, 422–8.Google Scholar
Shu, D.-G., Luo, H. L., Conway Morris, S., Zhang, X.-L., Hu, S.-X., Chen, L., Han, J., Zhu, M., Li, Y. & Chen, L. Z. 1999. Lower Cambrian vertebrates from South China. Nature 402, 42–6.Google Scholar
Skovsted, C. B. & Peel, J. S. 2001. The problematic fossil Mongolitubulus from the Lower Cambrian of Greenland. Bulletin of the Geological Society of Denmark 48, 135–47.Google Scholar
Smith, M. P., Sansom, I. J. & Cochrane, K. D. 2001. The Cambrian origin of vertebrates. In Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny and Development (ed. Ahlberg, P.), pp. 6784. London: Taylor and Francis.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Harvard University, Museum of Comparative Zoology Special Publication, 284 pp.Google Scholar
Sundberg, F. A. & McCollum, L. B. 2000. Ptychopariid trilobites of the Lower–Middle Cambrian boundary interval, Pioche Shale, southeastern Nevada. Journal of Paleontology 74, 604–30.Google Scholar
Walcott, C. D. 1912. Cambrian geology and paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita, and Merostomata. Smithsonian Miscellaneous Collections 57, 145–228.Google Scholar
Webster, M. 2011. Trilobite biostratigraphy and sequence stratigraphy of the upper Dyeran (traditional Laurentian ‘Lower Cambrian’) in the southern Great Basin, U.S.A. Museum of Northern Arizona Bulletin 67, 121–54.Google Scholar
Webster, M., Gaines, R. R. & Hughes, N. C. 2008. Microstratigraphy, trilobite biostratinomy, and depositional environment of the “Lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada Early Cambrian helicoplacoid species. Palaeogeography, Palaeoclimatology, Palaeoecology 264, 100–22.Google Scholar
Whiteaves, J. F. 1892. Description of a new genus and species of phyllocarid Crustacea from the middle Cambrian of Mount Stephen, B.C. Canadian Record of Science 5, 205–8.Google Scholar
Wilbur, B. C. 2006. Reduction in the number of Early Cambrian helicoplacoid species. Palaeoworld 15, 283–93.Google Scholar
Yang, J., Ortega-Hernández, J., Gerber, S., Butterfield, N. J., Hou, J.-b., Lan, T. & Zhang, X.-G. 2015. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora. Proceedings of the National Academy of Sciences 112, 8678–83.Google Scholar
Zamora, S., Lefebvre, B., Álvaro, J. J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Jih-Pai, L., Nardin, E., Parsley, R., Rozhnov, S., Sprinkle, J., Sumrall, C. D., Vizcaino, D. & Smith, A. B. 2013. Cambrian echinoderm diversity and palaeobiogeography. In Early Palaeozoic Palaeography and Biogeography (eds Harper, D. & Servais, T.), pp. 157–71. Geological Society of London, Memoir no. 38.Google Scholar
Supplementary material: Image

Kimmig et al. supplementary material

Kimmig et al. supplementary material 1

Download Kimmig et al. supplementary material(Image)
Image 10.8 MB
Supplementary material: Image

Kimmig et al. supplementary material

Kimmig et al. supplementary material 2

Download Kimmig et al. supplementary material(Image)
Image 5.2 MB