Skip to main content
Log in

Mechanism of infrared detection and transduction by beetle Melanophila Acuminata

In memory of Jerry Wolken

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The Melanophila acuminata beetle is attracted to forest fires via a pair of infrared sensory organs composed of sensilla. Our histological work showed that each sensillum contains lipid layers surrounding a protein layer and a unique polysaccharide base that is associated with a neuron to each sensillum. Infrared microscopy showed that the protein region maximally absorbs infrared radiation at 3 μm wavelength and at 10 μm, which corresponds to the known radiation produced by forest fires at 3 μm. Mathematical calculations showed that the physical properties of the sensilla are such that the expected temperature rise is insufficient for transduction of the infrared signal through mechanical means or as a thermal receptor as previously thought; hence the protein plays the pivotal role in perception of single photons and transmission of the signal within the sensilla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Linsley E G. Attraction of melanophila beetles by fire and smoke. Journal of Economic Entomology, 1943, 36, 341–342.

    Article  Google Scholar 

  2. Schmitz H, Bleckman H. Fine structure and physiology of the infrared receptor of beetles belonging to the genus Melanophila (Coleoptera: Buprestidae). International Journal of Insect Morphology and Embryology, 1997, 26, 205–215.

    Article  Google Scholar 

  3. Van Dyke E C. Buprestid swarming. Pan-Pacific Entomologist, 1926, 3, 41.

    Google Scholar 

  4. Schmitz, H H, Bleckman H. Fine structure and physiology of the infrared receptors of beetles of the genus Melanophila acuminata (Coleoptera: Buprestidae). International Journal of Insect Morphology and Embryology, 1997, 26, 205–215.

    Article  Google Scholar 

  5. Evans W G. Infra-red receptors in Melanophila acuminate DeGeer. Nature, 1964, 202, 211.

    Article  Google Scholar 

  6. Evans W G. Morphology of the infrared sense organ of Melanophila acuminata (Buprestidae, Coleoptera). Annals of the Entomological Society of America, 1966a, 59, 873–877.

    Article  Google Scholar 

  7. Evans W G. Perception of infrared radiation from forest fires by Melanophila acuminata (Coleoptera: Buprestidae). Canadian Entomologist, 1966b, 112, 211–216.

    Article  Google Scholar 

  8. Evans W G, Kuster J E. The infrared receptive fields of Melanophila acuminate DeGeer (Buprestidae, Coleoptera). Ecology, 1980, 47, 1061–1065.

    Article  Google Scholar 

  9. Vodran T, Apel K H, Schmitz H. The infrared receptor of melanophila acuminate De Geer (Coleoptera: Buprestidae): ultrastructure study of a unique insect thermoreceptor and its possible decent from hair mechanoreceptor. Tissue and Cell, 1995, 27, 645–658.

    Article  Google Scholar 

  10. Hammer D X, Schmitz H, Schmitz A, Grady Rylander H 3rd, Welch A J. Sensitivity threshold and response characteristics of infrared detection in the beetle Melanophila acuminata (Coleoptera: Buprestidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2001, 128, 805–819.

    Article  Google Scholar 

  11. Sowards L A, Schmitz H, Tomlin D W, Naik R R, Stone M O. Characterization of beetle Melanophila acuminata (Coleoptera: Buprestidae) infrared pit organs by high-performance liquid chromatography/mass spectrometry, scanning electron microscope, and Fourier transform-infrared spectroscopy. Annals of the Entomological Society of America, 2001, 94, 686–694.

    Article  Google Scholar 

  12. Schmitz H, Bleckman H. The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera: Buprestidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 182, 647–657.

    Article  Google Scholar 

  13. Hecht E. Optik. Addison-Wesley, Bonn, 1989.

    Google Scholar 

  14. Davis A P, Lettington A H. Principles of thermal imaging. In: Burnay SG, Williams T L, Johnes C H, eds. Applications of Thermal Imaging. Hilger, Philadelphia, 1988, 1–34.

    Google Scholar 

  15. Froehlich C L, Rademeyer P, Schutte C. Atmoshperic transmittance at infrared wavelength at the coast and inland. Suid Afrikaanse Tydskrif vir Wetenskap, 1992, 88, 443–445.

    Google Scholar 

  16. Schmitz A, Schebrock A, Schmitz H. The analysis of mechanosensory origin of the infrared sensilla in Melanophila acuminata (Coleoptera: Buprestidae) adduces new insight into the transduction mechanism. Anthrop Structure & Development, 2007, 36, 291–303.

    Article  Google Scholar 

  17. Pan Y T, Farkas D L. Non-invasive imaging of living human skin with dual-wavelength optical coherence tomography in two and tree dimensions. Journal of Biomedical Optics, 1998, 10, 446–455.

    Article  Google Scholar 

  18. Himes M, Moriber L. A triple stain for deoxyribonucleic acid, polysaccharides and proteins. Stain Technology, 1956, 31, 67–70.

    Article  Google Scholar 

  19. Lûsis O. The histology and histochemistry of development and resorption in the terminal oocytes of desert locust, Schistocerca gregaria. Quarterly Journal of Microscopical Science, 1963, 104, 57–68.

    Google Scholar 

  20. Vogel M. Observations on the structure of cystierci of taenia solium and taenia saginata (Cestoda: Taeniidae). The Journal of Parisitology, 1963, 49, 86–90.

    Google Scholar 

  21. Patterson C M, Kruger B J, Dalez T J. Lipid and protein histochemitry of enamel-effects of fluoride. Calcified Tissue Research, 1977, 24, 119–123.

    Article  Google Scholar 

  22. Ornstein L, Ansley H R. Spectral matching of classical cytochemistry to automated cytology. Journal of Histochemistry & Cytochemistry, 1974, 22, 453–469.

    Article  Google Scholar 

  23. Snodgrass S E. Principles of Insect Morphology, Cornell University Press, New York, 1993.

    Google Scholar 

  24. Klowden M J. Physiological Systems in Insects, Academic Press, San Diego, 2002.

    Google Scholar 

  25. Briand L, Nespoulos C, Huet J C, Takahashi M, Pernollet J C. Lingand binding and physico-chemical properties ASP2, a recombination odorant-biding protein from honeybee. European Journal of Biochemistry, 2001, 268, 752–760.

    Article  Google Scholar 

  26. Israelowitz M, Rizvi S, Vonschroeder H. Bioluminescence of the “fire-chaser” beetle Melanophila acuminate. Journal of Luminescence, 2007, 126, 149–154.

    Article  Google Scholar 

  27. Bhargava, R, Fernandez D C, Schaeberle M D, Levin I W. Effect of focal plane array cold shield aperture size on Fourier transform infrared micro-imaging spectrometer performance. Applied Spectroscopy, 2000, 54, 1743–1750.

    Article  Google Scholar 

  28. Gatlin C L, Kleemann G R, Hays L G, Link A J, Yates J R 3rd. Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Analytical Biochemistry, 1998, 263, 93–101.

    Article  Google Scholar 

  29. Rosenberg I M. Protein Analysis and Purification: Benchtop Techniques. Birhauser, Boston, 1996, 77–81.

    Book  Google Scholar 

  30. Lord R C, Mendelsohn R. Raman spectroscopy of membrane constituents and related molecules. Molecular Biology, Biochemistry & Biophysics, 1981, 31, 377–436.

    Article  Google Scholar 

  31. Leokandia K. Utilization of yolk platelets and lipid bodies during the myogenesis of Xenopus laevis (Daudin). Cell and Tissue Research, 1975, 159, 279–286.

    Article  Google Scholar 

  32. Prasad T K, Rangaraj N, Rao N M. Quantitative aspects of endocytic activity in lipid-mediated transfections. FEBS Letters, 2005, 579, 2635–2642.

    Article  Google Scholar 

  33. Hazel J Fuchigami N, Gorbunov V, Schmitz H, Stone M, Tsukruk V V. Ultramicrostructure and microthermomechanics of biological IR detectors: materials properties from a biomimetic perspective. Biomacromolecules, 2001, 2, 304–312.

    Article  Google Scholar 

  34. Komure O, Ichikawa K, Tsutsumi A, Hiyama K, Fujioka A. Intra-axonal polysaccharide deposits in the peripheral nerve seen in adult polysaccharide storage myopathy. Acta Neuropathologica, 1985, 65, 300–304.

    Article  Google Scholar 

  35. Todoka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in the thermal hyperalgesia. Journal of Biological Chemistry, 2004, 279, 35133–35138.

    Article  Google Scholar 

  36. Tamm L K, Arora A, Kleinschmidt J H. Structure and assembly of β-barrels membrane proteins. Journal of Biological Chemistry, 2001, 276, 32399–32402.

    Article  Google Scholar 

  37. Cheng J C, Pisano A P. Photolithograpic process of the biopolymer chitosan into micro/nanostructures. Journal Microelectromechanical Systems, 2008, 17, 402–409.

    Article  Google Scholar 

  38. Moharramm, M A, Higazi A, Moharram A A. Infrared spectra of urine from cancerous bladders. International Journal of Infrared and Millimeters Waves, 1996, 17, 1103–1114.

    Article  Google Scholar 

  39. Evans W G. Infrared radiation sensors of melanophila acuminata (Coleoptera: Buprestidae): A thermopneumatic model. Annals of the Entomological Society of America, 2005, 98, 738–746.

    Article  Google Scholar 

  40. Vondran T, Schmitz H. The infrared receptor of Melanophila acuminata DeGeer (Coleoptera: Buprestidae): ultrastructural study of a unique insect thermoreceptor and its possible descent from a hair mechanoreceptor. Tissue and Cell, 1995, 27, 645–658.

    Article  Google Scholar 

  41. Smith S J, Buchanan J, Osses L R, Charlton M P, Agustineed G J. The spatial distribution of calcium signals in squid presynaptic terminals. The Journal of Physiology, 1999, 427, 573–593.

    Google Scholar 

  42. König K. Laser tweezers and multiphoton microscopes in life sciences. Histochemistry and Cell Biology, 2004, 114, 79–92.

    Google Scholar 

  43. Botvinick E L, Venugopalan W, Shah J V, Liaw L H, Berns M W. Controlled ablation of microtubulus using a picosecond laser. Biophysical Journal, 2004, 87, 4203–4212.

    Article  Google Scholar 

  44. Chen M C, Lord R C. Laser-excited Raman spectroscopy of biomolecules. VI. Polypeptides as conformational models. Journal of the American Chemical Society, 1974, 96, 4750–4752.

    Article  Google Scholar 

  45. Branden C, Tooze J. Introduction to Protein Structure. Garland Publishing Inc., New York, 1991.

    Google Scholar 

  46. Engh R A, Huber R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallographica Section A, 1991, 47, 392–400.

    Google Scholar 

  47. Krimm S. Peptides and proteins. In: Spiro T G, ed. Biological Applications of Raman Spectroscopy. John Wiley & Sons, New York, 1987, 3–45.

    Google Scholar 

  48. Susi H. Infrared Spectra of Biological Macromolecular and Related Systems. In: Timasheff S N, Fasman G D, eds. Structure and Stability of Biological Macromolecules. New York, Marcel Dekker, 1969, 575–663.

    Google Scholar 

  49. Stuart, B. Biological Applications of Infrared Spectroscopy. John Wiley & Sons, New York, 1997, 113–153.

    Google Scholar 

  50. Cheng J C, Pisano A P. Photolithograpic process of the biopolymer chitosan into micro/nanostructures. Journal of Microelectromechanical Systems, 2008, 17, 402–409.

    Article  Google Scholar 

  51. Van der Horst D J, van Doorn J M, Passier C, C M P, Vork M M, Glatz J F C. Role of fatty acid-binding protein in lipid metabolism of insect flight muscle. Molecular and Cellular Biochemistry, 1993, 123, 145–152.

    Article  Google Scholar 

  52. Skordos A, Chan P H, Vincent J V F, Jeronimidis G. A novel strain sensor based on the campaniform sensillum of insects. Philosophical Transactions of the Royal Society, 2002, 360, 239–253.

    Article  Google Scholar 

  53. Sowards L A, H. Schmitz H, Tomlin D W, Naik R R, Stone M O. Characterization of beetle melanophila acuminata (Coleoptera: Buprestidae) infrared pit organs by high-performance liquid chromatography/mass spectrometry, scanning electron microscope, and Fourier transform-infrared spectroscopy. Annals of the Entomological Society of America, 2001, 94, 686–694.

    Article  Google Scholar 

  54. Matson M, Stephens G, Robinson J. Fire detection using data from the NOAA-N satellites. International Journal of Remote Sensing, 1987, 8, 961–970.

    Article  Google Scholar 

  55. Lopez S, Gonzalez F, Llop R, Cuevas J. An evaluation of the utility of NOAA AVHRR images for monitoring forest fire risk in Spain. International Journal of Remote Sensing, 1991, 12, 1841–1851.

    Article  Google Scholar 

  56. Kennedy P, Belward A, Gregoire J. An improved approach to fire monitoring in West Africa using AVHRR data. International Journal of Remote Sensing, 1994, 15, 2235–2245.

    Article  Google Scholar 

  57. Rauste Y, Herland E, Frelander H, Soini K, Kuoremaki T. Satellite-based forest fire detection for fire control in boreal forests’. International Journal of Remote Sensing, 1997, 18, 2641–2656.

    Article  Google Scholar 

  58. Giglio L, Kendall J, Justice C. Evaluation of global fire detection algorithms using simulated AVHRR infrared data. International Journal of Remote Sensing, 1999, 20, 1947–1985.

    Article  Google Scholar 

  59. Anderson G P, Chetwyd J H, Berstein L, Berk A, Acharya P K, Robertson D, Shetttle E P. System and Method for Modeling Moderate Resolution Propagation, US Patent 5, 1999, 884, 226.

    Google Scholar 

  60. Flasse S, Ceccato P. A contextual algorithm for AVHRR fire detection. International Journal of Remote Sensing, 1996, 17, 419–424.

    Article  Google Scholar 

  61. Kaufman Y, Tucker C, Fung I. Remote sensing of biomass burning in the tropics. Journal of Geophysical Research, 1990, 95, 9927–9939.

    Article  Google Scholar 

  62. Barrett E, Curtis L. Environmental Remote Sensing, Stanley Thorne Publishers Limited, Cheltenham, 1999.

    Google Scholar 

  63. Dereniak E L, Boreman G D. Infrared Detectors and Systems. Hoboken, NJ: John Wiley & Sons, New York, 1996.

    Google Scholar 

  64. Niven J E, Scharleman J P W. Do insect metabolic rates at rest and during flight scale with body mass? Biology Letters, 2005, 1, 346–349.

    Article  Google Scholar 

  65. Weidmann D, Courtois D. Infrared 7.6-μm lead-salt diode laser heterodyne radiometry of water vapor in a CH4- air premixed flat flame. Applied Optics, 2003, 42, 1115–1121.

    Article  Google Scholar 

  66. Heerklotz H, Seelig J. Application of pressure perturbation calorimetry to lipid bilayers. Biophysical Journal, 2002, 82, 1445–1452.

    Article  Google Scholar 

  67. Forti L, Pouzart C, Llano L. Action potential-evoked Ca2+ signals and calcium channels in axoms of developing rat cerebellar interneurons. Journal Physiology, 2000, 527, 33–48.

    Article  Google Scholar 

  68. Schmitz H, Schmitz A, Trenner S, Bleckmann H. A new type of insect infrared organ of low thermal mass. Naturwissenschaften, 2002, 89, 226–229.

    Article  Google Scholar 

  69. Tracy R C. A model of dynamic exchange of water exchange of water and energy between a terrestrial amphibian and its environment. Ecological Monographs, 1976, 46, 293–326.

    Article  Google Scholar 

  70. White S H, Ladokhin A S, Jayasinghe S, Hristova K. How membranes shape protein structure. Journal Biological Chemistry, 2001, 35, 32395–32398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herb P. von Schroeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Israelowitz, M., Kwon, JA., Rizvi, S.W.H. et al. Mechanism of infrared detection and transduction by beetle Melanophila Acuminata. J Bionic Eng 8, 129–139 (2011). https://doi.org/10.1016/S1672-6529(11)60018-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(11)60018-8

Keyword

Navigation