Skip to main content
Log in

Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

As the emission control regulations get stricter, the NOx reduction in the sintering process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain. The NOx emissions from the sintering machine account for 48% of total amount from the iron and steel industry. Thus, it is essential to reduce NOx emissions from the sintering machine, for the achievement of clean production of sinter. Ca-Fe oxides, serving as the main binding phase in the sinter, are therefore used as additives into the sintering mixture to reduce NOx emissions. The results show that the NOx reduction ratio achieves 27.76% with 8% Ca-Fe oxides additives since the Ca-Fe oxides can advance the ignition and inhibit the nitrogen oxidation compared with the conventional condition. Meanwhile, the existence of Ca-Fe oxides was beneficial to the sinter quality since they were typical low melting point compounds. The optimal mass fraction of Ca-Fe oxides additives should be less than 8% since the permeability of sintering bed was significantly decreased with a further increase of the Ca-Fe oxides fines, inhibiting the mineralization reaction of sintering mixture. Additionally, the appropriate particle size can be obtained when mixing an equal amount of Ca-Fe oxides additives of −0.5 mm and 0.5–3.0 mm in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Bureau of Statistics of China, China Statistical Yearbook on Environment, 2013, China Statistic Press, Beijing, 2013 (in Chinese).

    Google Scholar 

  2. Emission Standard of Air Pollutants for Sintering and Pelletizing of Iron and Steel Industry, China Environmental Science Press, Beijing, 2012 (in Chinese).

  3. C. L. Mo, C. S. Teo, I. Hamilton, J. Morriso, ISIJ Int. 37 (1997) 350–357.

    Article  Google Scholar 

  4. S. Roudier, L. D. Sancho, R. Remus, in: Best Available Techniques (BAT) Reference Document for Iron and Steel Production, European Commission, Seville Spain, 2013, pp. 99–107.

  5. C. G. Jin, H. G. Su, L. J. Na, SOx and NOx Reducing Method of Sintering Discharging Gas, Korea, 20020040506 (A), 2002.

  6. K. Morioka, S. Inaba, M. Shimizu, K. Ano, T. Sugiyama, ISIJ Int. 40 (2000) 280–285.

    Article  Google Scholar 

  7. X. G. Bi, J. Y. Liao, W. Xiong, G. F. Zhou, Z. H. Feng, Journal of Wuhan University of Science and Technology 31 (2008) 449–452 (in Chinese).

    Google Scholar 

  8. X. L. Chen, Y. S. Huang, M. Gan, X. H. Fan, Z. Y. Yu, L. S. Yuan, J. Iron Steel Res. Int. 22 (2015) 1107–1112.

    Article  Google Scholar 

  9. S. Ikehara, Y. Terada, S. Kubo, J. Sakuragi, Nippon Steel Technical Report 70 (1996) 55–61.

    Google Scholar 

  10. N. Menad, H. Tayibi, F. G. Carcedo, A. Hernandez, J. Clean. Prod. 14 (2006) 740–747.

    Article  Google Scholar 

  11. X. Fan, Z. Yu, M. Gan, X. Chen, T. Jiang, H. Wen, ISIJ Int. 54 (2014) 2541–2550.

    Article  Google Scholar 

  12. N. Apostolescu, B. Geiger, K. Hizbullah, M. T. Jan, S. Kureti, D. Reichert, F. Schott, W. Weisweiler, Appl. Catai. B-Environ. 62 (2006) 104–114.

    Article  Google Scholar 

  13. G. H. Yao, F. Wang, X. B. Wang, K. T. Gui, Energy 35 (2010) 2295–2300.

    Article  Google Scholar 

  14. D. Klukowski, P. Balle, B. Geiger, S. Wagloehner, S. Kureti, B. Kimmerle, A. Baiker, J. D. Grunwaldt, Appl. Catal. B: Environ. 93 (2009) 185–193.

    Article  Google Scholar 

  15. G. Qi, R. T. Yang, Appl. Catal. B: Environ. 44 (2003) 217–225.

    Article  Google Scholar 

  16. W. S. Chen, J. Luo, L. B. Qin, J. Han, J. Environ. Manage. 164 (2015) 146–150.

    Article  Google Scholar 

  17. J. Han, X. He, L. Qin, W. Chen, F. Yu, Ironmak. Steelmak. 41 (2014) 350–354.

    Article  Google Scholar 

  18. M. Gan, X. Fan, Z. Yu, X. Chen, Z. Ji, W. Lv, S. Liu, Y. S. Huang, Ironmak. Steelmak. 43 (2016) 442–449.

    Article  Google Scholar 

  19. M. R. Eloy, S. Nobuo, Metall. Trans. B. 21 (1990) 105–109.

    Article  Google Scholar 

  20. R. Harvey, D. Ralf, R. Albert, Appl. Catal. B: Environ. 17 (1998) 357–369.

    Article  Google Scholar 

  21. S. Wu, T. Sugiyama, K. Morioka, E. Kasai, Y. Omori, Tetsu-to-Hagane 80 (1994) 276–281 (in Japanese).

    Article  Google Scholar 

  22. Y. Chen, Z. Wang, Z. Guo, J. Iron Steel Res. 21 (2009) No. 5, 8–11 (in Chinese).

    Google Scholar 

  23. Y. Chen, Z. Wang, Z. Guo, J. Iron Steel Res. 21 (2009) No. 1, 6–9 (in Chinese).

    Google Scholar 

  24. Y. Wang, J. Zhang, J. Iron Steel Res. Int. 18 (2011) No. 10, 1–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yuan Yu Ph. D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Zy., Fan, Xh., Gan, M. et al. Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering. J. Iron Steel Res. Int. 24, 1184–1189 (2017). https://doi.org/10.1016/S1006-706X(18)30016-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(18)30016-5

Key words

Navigation