Skip to main content
Log in

Lagrangian block hydrodynamics for environmental fluid mechanics simulations

  • Environmental Hydrodynamics
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The Lagrangian block hydrodynamics is formulated based on the block advection of fluid. By enforcing the mass and momentum conservations on the Lagrangian mesh, the numerical oscillation problem encountered in the classical Eulerian computational methods is circumvented. A large number of the previously computationally difficult problems in environmental fluid mechanics are successfully simulated using the method. Examples of these simulations are described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu V H, Altai W. Simulation of shallow transverse shear flow by generalized second moment method. J Hydraul Res, 2001, 39(6): 575–582.

    Article  Google Scholar 

  2. Chu V H, Altai W. Simulation of turbulence and gravity interfaces by Lagrangian block method. Computational Fluid Dynamics 2002, New York: Springer-Verlag, 2002, 299–304.

    Google Scholar 

  3. Tan L W, Chu V H. Simulation of wave fronts on dry beds using Lagrangian blocks. Engrg Comput Mech, 2009a, 162(EM2): 57–66.

    Google Scholar 

  4. Tan L W, Chu V H. Lauber and Hager’s dam-break wave data for numerical model validation. J Hydraul Res, 2009b, 47(4): 524–528.

    Article  Google Scholar 

  5. Tan L W, Chu V H. Wave runup simulations using Lagrangian blocks on Eulerian mesh. J Hydro-environ Res, 2010a, 3(4): 193–200.

    Article  Google Scholar 

  6. Tan L W, Chu V H. Wet-and-dry interface on steep slopes simulations using Lagrangian blocks. Proc 6th Int Symp Env Hydraul, 2010b, Athens, Greece.

  7. Tan L W, Chu V H. Dam-break flood simulations using 2D Lagrangian blocks on Eulerian mesh method. Proc 6th Int Symp Env Hydraul, 2010c, Athens, Greece.

  8. Harlow F H. The particle-in-cell computing method for fluid dynamics. Methods Comput Phys, New York: Academic Press, 1964, 3: 319–343.

    Google Scholar 

  9. Monaghan J J. Smoothed particle hydrodynamics. Reports Progress Phys, 2005, 68(8): 1703–1759.

    Article  MathSciNet  Google Scholar 

  10. Ritter A. The propagation of water waves. Zeitschrift des Vereines Deutsher Ingenieure, 1892, 36(33): 947–954.

    Google Scholar 

  11. Stoker J J. Water Waves: The Mathematical Theory with Applications. Wiley Interscience, 1957.

  12. Hogg A J. Lock-release gravity currents and dam-break flows. J Fluid Mech, 2006, 569(1): 61–87.

    Article  MathSciNet  Google Scholar 

  13. Ancey C, Iverson R M, Rentschler M, et al. An exact solution for ideal dam-break floods on steep slopes. Water Resources Res, 2008, 44: W01430.

    Article  Google Scholar 

  14. Shen M C, Meyer R E. Climb of a bore on a beach: part 3, run-up. J Fluid Mech, 1963, 16(1): 113–125.

    Article  MathSciNet  Google Scholar 

  15. Peregrine D H, Williams S M. Swash overtopping a truncated plane beach. J Fluid Mech, 2001, 440: 391–399.

    Article  MathSciNet  Google Scholar 

  16. van Leer B. Towards the ultimate conservative difference scheme, II, Monotonicity and conservation combined in a second-order scheme. J Comput Phys, 1974, 14: 361–370.

    Article  Google Scholar 

  17. Gaskell P H, Lau A K C. Curvature compensated convective transport: SMART, a new boundedness preserving transport algorithm. Int. J Num Meth in Fluids, 1988, 8: 617–641.

    Article  MathSciNet  Google Scholar 

  18. Leonard B P, Mokhtari S. Beyond first-order upwinding: the ULTRA-SHARP alternative for non-oscillatory steady-state simulation of convection. Int J Num Meth in Fluids, 1990, 30: 729–766.

    Article  Google Scholar 

  19. Leonard B P, Drummond J E. Why you should not use ‘HYBRID’, ‘POWER-LAW’ or related exponential schemes for convective modelling — there are much better alternatives. Int J Num Meth in Fluids, 1995, 20: 421–442.

    Article  Google Scholar 

  20. Pinilla C E, Bouhairie S, Tan L-W, et al. Minimal intervention to simulations of shallow-water equations. J Hydro-env Res, 2010, 3(4): 201–207.

    Article  Google Scholar 

  21. Celik I B, Ghia U, Roache P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Engrg, 2008, 130: 1–4.

    Google Scholar 

  22. Thacker C W. Some exact solutions to the nonlinear shallow-water wave equations. J Fluid Mech, 1981, 107: 499–508.

    Article  MathSciNet  Google Scholar 

  23. Webb R H, Schmidt J C, Marzolf G R, et al. The controlled flood in Grand Canyon. American Geophy. Union, 1999, Monograph 110.

  24. Pinilla C, Chu V H. Waves and bed-friction effect on stability of transverse shear flow in shallow waters. J Coastal Res, 2008, 52: 207–214.

    Article  Google Scholar 

  25. Pinilla C, Chu V H. The role of wave radiation on instability of coastal current. Proc. 33rd Congress IAHR, 2009a, Vancouver, Canada.

  26. Pinilla C, Chu V H. Wave radiation and shear instability in rotating stratified flow. Proc 28th Int Conf on Ocean, Offshore and Arctic Engrg, 2009b, Honolulu, Hawaii.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent H. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Lw., Chu, V.H. Lagrangian block hydrodynamics for environmental fluid mechanics simulations. J Hydrodyn 22 (Suppl 1), 627–632 (2010). https://doi.org/10.1016/S1001-6058(10)60009-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(10)60009-1

Key Words

Navigation