Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T23:30:07.731Z Has data issue: false hasContentIssue false

Importance of sampling across an assemblage of glacial landforms for interpreting cosmogenic ages of deglaciation

Published online by Cambridge University Press:  20 January 2017

Arjen P. Stroeven*
Affiliation:
Department of Physical Geography and Quaternary Geology, Stockholm University, S-10691 Stockholm, Sweden
Derek Fabel
Affiliation:
School of Geographical and Earth Sciences, The University of Glasgow, Glasgow, UK
Jonathan M. Harbor
Affiliation:
Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, USA
David Fink
Affiliation:
Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia
Marc W. Caffee
Affiliation:
Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, USA Department of Physics, Purdue University, West Lafayette, USA
Torbjørn Dahlgren
Affiliation:
Statoil ASA, P.O. Box 40, 9481 Harstad, Norway
*
Corresponding author. Fax: + 46 8 164818. E-mail address:arjen.stroeven@natgeo.su.se (A.P. Stroeven).

Abstract

Deglaciation chronologies for some sectors of former ice sheets are relatively poorly constrained because of the paucity of features or materials traditionally used to constrain the timing of deglaciation. In areas without good deglaciation varve chronologies and/or without widespread occurrence of material that indicates the start of earliest organic radiocarbon accumulations suitable for radiocarbon dating, typically only general patterns and chronologies of deglaciation have been deduced. However, mid-latitude ice sheets that had warm-based conditions close to their margins often produced distinctive deglaciation landform assemblages, including eskers, deltas, meltwater channels and aligned lineation systems. Because these features were formed or significantly altered during the last glaciation, boulder or bedrock samples from them have the potential to yield reliable deglaciation ages using terrestrial cosmogenic nuclides (TCN) for exposure age dating. Here we present the results of a methodological study designed to examine the consistency of TCN-based deglaciation ages from a range of deglaciation landforms at a site in northern Norway. The strong coherence between exposure ages across several landforms indicates great potential for using TCN techniques on features such as eskers, deltas and meltwater channels to enhance the temporal resolution of ice-sheet deglaciation chronologies over a range of spatial scales.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, E.S., Østmo, R., Forsberg, K.F., and Lehman, S.J. Late- and post-glacial depositional environments in the Norwegian Trench, northern North Sea. Boreas 24, (1995). 4764.CrossRefGoogle Scholar
Anderson, R.S., Repka, J.L., and Dick, G.S. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology 24, (1996). 4751.2.3.CO;2>CrossRefGoogle Scholar
Andrén, T., Björck, J., and Johnson, S. Correlation of Swedish glacial varves with the Greenland (GRIP) oxygen isotope record. Journal of Quaternary Science 14, (1999). 361371.3.0.CO;2-R>CrossRefGoogle Scholar
Andrén, T., Lindeberg, G., and Andrén, E. Evidence of the final drainage of the Baltic Ice Lake and the brackish phase of the Yoldia Sea in glacial varves from the Baltic Sea. Boreas 31, (2002). 226238.CrossRefGoogle Scholar
Balco, G., Stone, J.O.H., Porter, S.C., and Caffee, M.W. Cosmogenic-nuclide ages for New England coastal moraines, Martha's Vineyard and Cape Cod, Massachusetts, USA. Quaternary Science Reviews 21, (2002). 21272135.CrossRefGoogle Scholar
Ballantyne, C.K., Stone, J.O., and McCarroll, D. Dimensions and chronology of the last ice sheet in Western Ireland. Quaternary Science Reviews 27, (2008). 185200.CrossRefGoogle Scholar
Benson, L., Madole, R., Phillips, W., Landis, G., Thomas, T., and Kubik, P. The probable importance of snow and sediment shielding on cosmogenic ages of north-central Colorado Pinedale and pre-Pinedale moraines. Quaternary Science Reviews 23, (2004). 193206.CrossRefGoogle Scholar
Berglund, B.E., Barnekow, L., Hammarlund, D., Sandgren, P., and Snowball, I.F. Holocene forest dynamics and climate changes in the Abisko area, northern Sweden — the Sonesson model of vegetation history reconsidered and confirmed. Ecological Bulletin 45, (1996). 1530.Google Scholar
Boulton, G.S., Dongelmans, P., Punkari, M., and Broadgate, M. Palaeoglaciology of an ice sheet through a glacial cycle: the European ice sheet through the Weichselian. Quaternary Science Reviews 20, (2001). 591625.CrossRefGoogle Scholar
Bradwell, T., Stoker, M.S., Golledge, N.R., Wilson, C.K., Merritt, J.W., Long, D., Everest, J.D., Hestvik, O.B., Stevenson, A.G., Hubbard, A.L., Finlayson, A.G., and Mathers, H.E. The northern sector of the last British Ice Sheet: maximum extent and demise. Earth-Science Reviews 88, (2008). 207226.CrossRefGoogle Scholar
Briner, J.P., Miller, G.H., Davis, P.T., Bierman, P.R., and Caffee, M. Last Glacial Maximum ice sheet dynamics in Arctic Canada inferred from young erratics perched on ancient tors. Quaternary Science Reviews 22, (2003). 437444.CrossRefGoogle Scholar
Briner, J.P., Kaufman, D.S., Manley, W.F., Finkel, R.C., and Caffee, M.W. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. Geological Society of America Bulletin 117, (2005). 11081120.CrossRefGoogle Scholar
Carlson, A.E., Clark, P.U., Raisbeck, G.M., and Brook, E.J. Rapid Holocene deglaciation of the Labrador sector of the Laurentide Ice Sheet. Journal of Climate 20, (2007). 51265133.CrossRefGoogle Scholar
Child, D., Elliott, G., Mifsud, C., Smith, A.M., and Fink, D. Sample processing for earth science studies at ANTARES. Nuclear Instruments & Methods in Physics Research Section B — Beam Interactions with Materials and Atoms 172, (2000). 856860.Google Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 268, (2010). 192199.CrossRefGoogle Scholar
Clarhäll, A., and Kleman, J. Distribution and glaciological implications of relict surfaces on the Ultevis plateau, northwestern Sweden. Annals of Glaciology 28, (1999). 202208.CrossRefGoogle Scholar
Dellgar Hagström, M. The Kiruna swarm in northern Fennoscandia : a landform analysis of an ice flow bed. Bachelors Thesis in Physical Geography, N-62, Stockholm. (2006). Department of Physical Geography and Quaternary Geology, Stockholm University. 20 pGoogle Scholar
Dunne, J., Elmore, D., and Muzikar, P. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27, (1999). 311.CrossRefGoogle Scholar
Dyke, A.S. A reinterpretation of glacial and marine limits around the northwestern Laurentide Ice Sheet. Canadian Journal of Earth Sciences 24, (1987). 591601.CrossRefGoogle Scholar
Dyke, A.S., Moore, A., Robertson, L. Deglaciation of North America. Geological Survey of Canada, Open File (2003). 1574 (CD ROM) Google Scholar
Ebert, K., and Kleman, J. Circular moraine features on the Varanger Peninsula, northern Norway, and their possible relation to polythermal ice sheet coverage. Geomorphology 62, (2004). 159168.CrossRefGoogle Scholar
Fabel, D., Stone, J., Fifield, L.K., and Cresswell, R.G. Deglaciation of the Vestfold Hills, East Antarctica: preliminary evidence from exposure dating of three subglacial erratics. Ricci, C.A. The Antarctic Region. Geological Evolution and Processes: Siena (1997). Terra Antartica, Publication. 829834.Google Scholar
Fabel, D., Stroeven, A.P., Harbor, J., Kleman, J., Elmore, D., and Fink, D. Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth and Planetary Science Letters 201, (2002). 397406.CrossRefGoogle Scholar
Fabel, D., Fink, D., Fredin, O., Harbor, J., Land, M., and Stroeven, A.P. Exposure ages from relict lateral moraines overridden by the Fennoscandian ice sheet. Quaternary Research 65, (2006). 136146.CrossRefGoogle Scholar
Farber, D.L., Hancock, G.S., Finkel, R.C., and Rodbell, D.T. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science 20, (2005). 759776.CrossRefGoogle Scholar
Fink, D., and Smith, A. An inter-comparison of 10Be and 26Al AMS reference standards and the 10Be half-life. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 259, (2007). 600609.CrossRefGoogle Scholar
Fink, D., Hotchkis, M., Hua, Q., Jacobsen, G., Smith, A.M., Zoppi, U., Child, D., Mifsud, C., v.d. Gaast, H., Williams, A., and Williams, M. The ANTARES AMS facility at ANSTO. Nuclear Instruments & Methods in Physics Research Section B — Beam Interactions with Materials and Atoms (2004). 223224. 109115.Google Scholar
Fjellanger, J., Sørbel, L., Linge, H., Brook, E.J., Raisbeck, G.M., and Yiou, F. Glacial survival of blockfields on the Varanger Peninsula, northern Norway. Geomorphology 82, (2006). 255272.CrossRefGoogle Scholar
Fredin, O. Glacial inception and Quaternary mountain glaciations in Fennoscandia. Quaternary International 95–96, (2002). 99112.CrossRefGoogle Scholar
Fredin, O., and Hättestrand, C. Relict lateral moraines in northern Sweden — evidence for an early mountain centred ice sheet. Sedimentary Geology 149, (2002). 145156.CrossRefGoogle Scholar
Goehring, B.M., Brook, E.J., Linge, H., Raisbeck, G.M., and Yiou, F. Beryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quaternary Science Reviews 27, (2008). 320336.CrossRefGoogle Scholar
Hallet, B., and Putkonen, J. Surface dating of dynamic landforms: young boulders on aging moraines. Science 265, (1994). 937940.CrossRefGoogle ScholarPubMed
Hang, T. Clay varve chronology in the Eastern Baltic area. GFF 119, (1997). 295300.CrossRefGoogle Scholar
Harbor, J., Stroeven, A.P., Fabel, D., Clarhäll, A., Kleman, J., Li, Y.K., Elmore, D., and Fink, D. Cosmogenic nuclide evidence for minimal erosion across two subglacial sliding boundaries of the late glacial Fennoscandian ice sheet. Geomorphology 75, (2006). 9099.CrossRefGoogle Scholar
Hättestrand, C. The glacial geomorphology of central and northern Sweden. Sveriges Geologiska Undersökning Ca 85, (1998). 47 ppGoogle Scholar
Hättestrand, C., Goodwillie, D., and Kleman, J. Size distribution of two cross-cutting drumlin systems in northern Sweden: a measure of selective erosion and formation time length. Annals of Glaciology 28, (1999). 146152.CrossRefGoogle Scholar
Hättestrand, C., Kosche, S., Näslund, J.-O., Fabel, D., and Stroeven, A.P. Drumlin formation time — evidence from northern and central Sweden. Geografiska Annaler 86A, (2004). 155167.CrossRefGoogle Scholar
Jackson, L.E. Jr., Phillips, F.M., Shimamura, K., and Little, E.C. Cosmogenic 36Cl dating of the Foothills erratics train, Alberta, Canada. Geology 25, (1997). 195198.2.3.CO;2>CrossRefGoogle Scholar
Jackson, L.E. Jr., Phillips, F.M., and Little, E.C. Cosmogenic 36Cl dating of the maximum limit of the Laurentide Ice Sheet in southwestern Alberta. Canadian Journal of Earth Sciences 36, (1999). 13471356.CrossRefGoogle Scholar
Kleman, J. The palimpsest glacial landscape in northwestern Sweden — Late Weichselian deglaciation landforms and traces of older west-centered ice sheets. Geografiska Annaler 74A, (1992). 305325.Google Scholar
Kleman, J., Hättestrand, C., Borgström, I., and Stroeven, A. Fennoscandian paleoglaciology reconstructed using a glacial geological inversion model. Journal of Glaciology 43, (1997). 283299.CrossRefGoogle Scholar
Kleman, J., Stroeven, A.P., and Lundqvist, J. Patterns of Quaternary ice sheet erosion and deposition in Fennoscandia and a theoretical framework for explanation. Geomorphology 97, (2008). 7390.CrossRefGoogle Scholar
Klingbjer, P., Brown, I.A., and Holmlund, P. Identification of climate controls on the dynamic behaviour of the subarctic glacier Salajekna, northern Scandinavia. Geografiska Annaler 86A, (2005). 215229.CrossRefGoogle Scholar
Kohl, C.P., and Nishiizumi, K. Chemical isolation of quartz for measurement of in situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, (1992). 35863587.CrossRefGoogle Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Liese von Gostomski, C., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 268, (2010). 187191.CrossRefGoogle Scholar
Lal, D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, (1991). 424439.CrossRefGoogle Scholar
Lide, D.R. CRC Handbook of Chemistry and Physics — Reference Book of Chemical and Physical Data. (1999). Springer, Google Scholar
Lifton, N., Smart, D.F., and Shea, M.A. Scaling time-integrated in situ cosmogenic nuclide production rates using a continuous geomagnetic model. Earth and Planetary Science Letters 268, (2008). 190201.CrossRefGoogle Scholar
Lilly, K., Fink, D., Fabel, D., and Lambeck, K. Pleistocene dynamics of the interior East Antarctic ice sheet. Geology 38, (2010). 703706.CrossRefGoogle Scholar
Linge, H., Olsen, L., Brook, E.J., Darter, J.R., Mickelson, D.M., Raisbeck, G.M., and Yiou, F. Cosmogenic nuclide surface exposure ages from Nordland, northern Norway: implications for deglaciation in a coast to inland transect. Norwegian Journal of Geology 87, (2007). 269280.Google Scholar
Lundqvist, J., and Mejdahl, V. Luminescence dating of the deglaciation in northern Sweden. Quaternary International 28, (1995). 193197.CrossRefGoogle Scholar
Mackintosh, A., White, D., Fink, D., Gore, D.B., Pickard, J., and Fanning, P.C. Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice-sheet thickness since the Last Glacial Maximum. Geology 35, (2007). 551554.CrossRefGoogle Scholar
Malmström, B., and Palmér, O. Glacial och periglacial geomorfologi på Varangerhalvön, Nordnorge: Geomorfologisk kartering med analys av glaciala former och blockhav. Meddelanden från Lunds Universitets Geografiska Institution, Avhandlingar 93, (1984). Lund, 351 p Google Scholar
Mangerud, J., Jansen, E., and Landvik, J.Y. Late Cenozoic history of the Scandinavian and Barents Sea ice sheets. Global and Planetary Change 12, (1996). 1126.CrossRefGoogle Scholar
Nesje, A., Dahl, S.O., Linge, H., Ballantyne, C.K., McCarroll, D., Brook, E.J., Raisbeck, G.M., and Yiou, F. The surface geometry of the Last Glacial Maximum ice sheet in the Andøya-Skånland region, northern Norway, constrained by surface exposure dating and clay mineralogy. Boreas 36, (2007). 227239.Google Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., and McAninch, J. Absolute calibration of 10Be AMS standards. Nuclear Instruments & Methods in Physics Research Section B — Beam Interactions with Materials and Atoms 258, (2007). 403413.Google Scholar
Nordkalott Project Map of Quaternary Geology. (1986). Geological Surveys of Finland, Norway and Sweden.Google Scholar
Phillips, W.M., Hall, A.M., Ballantyne, C.K., Binnie, S., Kubik, P.W., and Freeman, S. Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages. Journal of Quaternary Science 23, (2008). 101107.CrossRefGoogle Scholar
Plug, L.J., Gosse, J.C., McIntosh, J.J., and Bigley, R. Attenuation of cosmic ray flux in temperate forest. Journal of Geophysical Research-Atmospheres 112, (2007). F02022 CrossRefGoogle Scholar
Putkonen, J., and Swanson, T. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, (2003). 255261.CrossRefGoogle Scholar
Putkonen, J., Connolly, J., and Orloff, T. Landscape evolution degrades the geologic signature of past glaciations. Geomorphology 97, (2008). 208217.CrossRefGoogle Scholar
Raab, B., and Vedin, H. Climate, Lakes and Rivers. (1995). SNA Publishing, National Atlas of Sweden, Stockholm. 176 pGoogle Scholar
Repka, J.L., Anderson, R.S., Finkel, R.C. Cosmogenic dating of fluvial terraces, Fremont River, Utah. Earth and Planetary Science Letters 152, (1997). 5979.Google Scholar
Ridge, J.C. The Quaternary glaciation of western New England with correlations to surrounding areas. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations — Extent and Chronology, Part II: North America. Developments in Quaternary Science Volume 2b, (2004). Elsevier, Amsterdam. 163193.Google Scholar
Rinterknecht, V.R., Clark, P.U., Raisbeck, G.M., Yiou, F., Brook, E.J., Tschudi, S., and Lunkka, J.P. Cosmogenic 10Be dating of the Salpausselkä I Moraine in southwestern Finland. Quaternary Science Reviews 23, (2004). 22832289.CrossRefGoogle Scholar
Rinterknecht, V.R., Clark, P.U., Raisbeck, G.M., Yiou, F., Bitinas, A., Brook, E.J., Marks, L., Zelcs, V., Lunkka, J.-P., Pavlovskaya, I.E., Piotrowski, J.A., and Raukas, A. The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet. Science 311, (2006). 14491452.CrossRefGoogle ScholarPubMed
Rodhe, L. Glaciofluvial channels formed prior to the last deglaciation: examples from Swedish Lapland. Boreas 17, (1988). 511516.CrossRefGoogle Scholar
Romundset, A. Relative sea level, deglaciation and tsunami history deduced from isolation basins. PhD Dissertation, University of Tromsø. http://www.ub.uit.no/munin/handle/10037/2703 (2010). Google Scholar
Schildgen, T.F., Phillips, W.M., and Purves, R.S. Simulation of snow shielding corrections for cosmogenic nuclide surface exposure studies. Geomorphology 64, (2005). 6785.CrossRefGoogle Scholar
Sollid, J.L., Andersen, S., Hamre, N., Kjeldsen, O., Salvigsen, O., Sturød, S., Tveitå, T., and Wilhelmsen, A. Deglaciation of Finnmark, North Norway. Norsk Geografisk Tidsskrift 27, (1973). 233325.CrossRefGoogle Scholar
Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, (2000). 2375323759.CrossRefGoogle Scholar
Stone, J.O., Balco, G.A., Sugden, D.E., Caffee, M.W., Sass, L.C. III, Cowdery, S.G., and Siddoway, C. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299, (2003). 99102.CrossRefGoogle ScholarPubMed
Stroeven, A.P., Fabel, D., Harbor, J., Hättestrand, C., and Kleman, J. Quantifying the erosional impact of the Fennoscandian ice sheet in the Torneträsk-Narvik corridor, northern Sweden, based on cosmogenic radionuclide data. Geografiska Annaler 84A, (2002). 275287.CrossRefGoogle Scholar
Stroeven, A.P., Fabel, D., Hättestrand, C., and Harbor, J. A relict landscape in the centre of Fennoscandian glaciation: cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology 44, (2002). 145154.CrossRefGoogle Scholar
Stroeven, A.P., Harbor, J., Fabel, D., Kleman, J., Hättestrand, C., Elmore, D., Fink, D., and Fredin, O. Slow, patchy landscape evolution in northern Sweden despite repeated ice-sheet glaciation. GSA Special Paper 398, (2006). 387396.Google Scholar
Strömberg, B. Revision of the lateglacial Swedish varve chronology. Boreas 14, (1985). 101105.CrossRefGoogle Scholar
Strömberg, B. Late Weichselian deglaciation and clay varve chronology in east-central Sweden. Sveriges Geologiska Undersökning Ca 73, (1989). 70 p.Google Scholar
Svensson, H. Några drag i Varangerhalvöns geomorfologi i belysning av nya flygfotografier. Svensk Geografisk Årsbok 47, (1971). 728.Google Scholar
Tschudi, S., Ivy-Ochs, S., Schlüchter, C., Kubik, P., and Rainio, H. 10Be dating of Younger Dryas Salpausselkä I formation in Finland. Boreas 29, (2000). 287293.CrossRefGoogle Scholar
Zreda, M.G., Phillips, F.M., and Elmore, D. Cosmogenic 36Cl accumulation in unstable landforms.2. Simulations and measurements on eroding moraines. Water Resources Research 30, (1994). 31273136.CrossRefGoogle Scholar