Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-17T17:02:51.765Z Has data issue: false hasContentIssue false

Post-Glacial climatic change on Boothia Peninsula, Nunavut, Canada

Published online by Cambridge University Press:  20 January 2017

Susan Zabenskie
Affiliation:
Laboratory for Paleoclimatology and Climatology (LPC), Department of Geography, University of Ottawa, Ottawa, ON, Canada K1N 6N5
Konrad Gajewski*
Affiliation:
Laboratory for Paleoclimatology and Climatology (LPC), Department of Geography, University of Ottawa, Ottawa, ON, Canada K1N 6N5
*
*Corresponding author. Fax: +1 613 562 5145.E-mail address:gajewski@uottawa.ca (K. Gajewski).

Abstract

A high temporal resolution pollen diagram from a lake in the mid-Arctic region of the Boothia Peninsula, Nunavut, Canada, documents the history of the regional vegetation and climate for the past 7200 yr. Major tundra pollen taxa in the core include Cyperaceae and Salix, with Cyperaceae comprising over 50% of the pollen in the early and late Holocene. Tree pollen, transported from far to the south, comprised a large percentage of the pollen sum, with Pinus accounting for 30% of the pollen in some levels of the core. Pollen percentages and concentrations of taxa typical of the mid-Arctic were highest in the mid-Holocene, corresponding to warm conditions. Decreasing pollen concentrations indicate cooling temperatures, with more rapid decreases occurring around 4200, 3800–3400, and 2500 cal yr BP. Pollen percentages of Salix, Cyperaceae, and Artemisia increased in the past 35 yr in response to global warming. Reconstructions of July temperature using the modern analog technique showed that the mid-Holocene (5800–2800 cal yr BP) was approximately 1 °C higher than during the past 1000 yr.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J.T., Webber, P.J., and Nichols, H. (1979). A Late Holocene Pollen Diagram from Pangnirtung Pass, Baffin Island, N.W.T., Canada. Review of Palaeobotany and Palynology 27, 128.Google Scholar
Bay, C., and Fredskild, B. (1997). Present and past vegetation in the high arctic, Easternmost North Greenland and the Relation to the Northeast Water Polyna. Journal of Marine Systems 10, 3539.Google Scholar
Bennett, K.D., Willis, K.J., Pollen, . pp. 5–32. In: Smol, J.P., Birks, H.J. (Eds.) (2001). Tracking Environmental Change Using Lake Sediments.. Volume 3, Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers,, The Netherlands..371 pp.Google Scholar
Bigelow, N., Brubaker, L., Edwards, M., Harrison, S., Prentice, I., Anderson, P., Andreev, A., Bartlein, P., Christensen, T., Cramer, W., Kaplan, J., Lozhkin, A., Matveyeva, N., Murray, D., McGuire, A., Razzhiven, V., Ritchie, J., Smith, B., Walker, D., Gajewski, K., Wolf, V., Holmqvist, B., Igarashi, Y., Kremenetskii, K., Paus, A., Pisaric, M., and Volkova, V. (2003). Climate change and Arctic ecosystems 1. Vegetation changes north of 55 °N between the last glacial maximum, mid-Holocene and present. Journal of Geophysical Research 108, D19 8170 .CrossRefGoogle Scholar
Bliss, L.C. (1988). Arctic Tundra and Polar Desert Biome.Barbour, M., Billings, W. North American Terrestrial Vegetation Cambridge Univ. Press, Cambridge.434 pp.Google Scholar
Cwynar, L., Burdern, E., and McAndrews, J.H. (1979). An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Canadian Journal of Earth Sciences 16, 11151120.Google Scholar
Dyke, A.S. (1984). Quaternary geology of Boothia Peninsula and northern District of Keewatin, central Canadian Arctic. Memoir vol. 407, Geological Survey of Canada, Ottawa.26 pp.Google Scholar
Faegri, K., and Iverson, J. (1975). Textbook of Pollen Analysis.3rd ed.Hafner Press, New York.Google Scholar
Fedorova, I.T., Volkova, Y.A., and Varlyguin, E. (1994). World vegetation cover. Digital raster data on a 30-minute cartesian orthonormal geodetic (lat/long) 1080×2160 grid Global Ecosystems Database Version 2.0. USDOC/NOAA National Geophysical Data Center, Boulder, CO.http://www.ngdc.noaa.gov/seg/ Last accessed 17/03/2007..Google Scholar
Fredskild, B. (1973). Studies in the vegetational history of Greenland. Meddelelser om Grønland 198, 1245.Google Scholar
Gajewski, K. (1995). Modern and Holocene pollen assemblages from some small arctic lakes on Somerset Island, NWT, Canada. Quaternary Research 44, 228237.CrossRefGoogle Scholar
Gajewski, K. (2002). Modern pollen assemblages in lake sediments from the Canadian Arctic. Arctic, Antarctic, and Alpine Research 34, 2632.Google Scholar
Gajewski, K., and Atkinson, D. (2003). Climate change in Northern Canada. Environmental Reviews 11, 69102.Google Scholar
Gajewski, K., and Frappier, M. (2001). A Holocene lacustrine record of environmental change in Northeast Prince of Wales Island, Nunavut, Canada. Boreas 30, 285289.Google Scholar
Gajewski, K., Garneau, M., and Bourgeois, J. (1995). Paleoenvironments of the Canadian High Arctic derived from Pollen and plant macrofossils: problems and potentials. Quaternary Science Reviews 14, 609625.CrossRefGoogle Scholar
Gajewski, K., Mott, R.J., Ritchie, J.C., and Hadden, K. (2000). Holocene vegetation history of Banks Island, Northwest Territories, Canada. Canadian Journal of Botany 78, 430436.CrossRefGoogle Scholar
Hyvärinen, H. (1985). )Holocene pollen stratigraphy of Baird Inlet, East-Central Ellesmere Island, Arctic Canada. Boreas 14, 1932.Google Scholar
Kapp, R. (2000). Pollen and Spores.2nd ed.American Association of Stratigraphic Palynologists Foundation Publication, 249 pp.Google Scholar
Kauffman, D., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsdóttir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.W., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Rühland, K., Smol, J.P., Steig, E.J., Wolfe, B.B. PARCS working group(2004). Holocene thermal maximum in the western Arctic (0° to 180 °W). Quaternary Science Reviews 23, 529560.Google Scholar
Kerwin, M.W., Overpeck, J.T., Webb, R.S., and Anderson, K.H. (2004). Pollen-based summer temperature reconstructions for the Eastern Canadian Boreal Forest, SubArctic and Arctic. Quaternary Science Reviews 23, 19011924.CrossRefGoogle Scholar
LeBlanc, M. (2002). A diatom-based Holocene palaeoenvironmental record from a mid-Arctic lake on Boothia Peninsula,. central mid Arctic, Nunavut, Canada. MSc Thesis, University of Ottawa., 81 pp.Google Scholar
LeBlanc, M., Gajewski, K., and Hamilton, P.B. (2004). A diatom-based Holocene palaeoenvironmental record from a mid-Arctic lake on Boothia Peninsula, Nunavut, Canada. Holocene 14, 417425.Google Scholar
McAndrews, J.H., Berti, A.A., and Norris, G. (1973). Key to the Quaternary pollen and spores of the Great Lakes region.. Royal Ontario Museum, Miscellaneous Publication. 64 pp.Google Scholar
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, S., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G. (1997). Arctic environmental change of the last four centuries. Science 278, 12511256.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. (2004). IntCal04 Terrestrial radiocarbon age calibration, 26-0 ka BP. Radiocarbon 46, 10291058.Google Scholar
Ritchie, J.C., Hadden, K., and Gajewski, K. (1987). Modern pollen assemblages from the high arctic of western Canada. Canadian Journal of Botany 68, 16051613.Google Scholar
Sawada, M. (2006). An open source implementation of the Modern Analog Technique (MAT) within the R computing environment. Computers & Geosciences 32, 818833.Google Scholar
Seppa, H., Cwynar, L.C., and Macdonald, G.M. (2003). Post-glacial vegetation reconstruction and a possible 8200 cal. yr BP event from the Low Arctic of Continental Nunavut, Canada. Journal of Quaternary Science 18, 621629.Google Scholar
Short, S.K., Andrews, J.T., and Mode, W.N. (1989). Modern and late Quaternary pollen spectra of fiord sediments, Eastern Baffin Island, Arctic Canada. Marine Micropaleontology 15, 181202.Google Scholar
Wagner, B., Melles, M., Hahne, J., Niessen, F., and Hubberten, H. (2000). Holocene climate history of Geographical Society Ø, East Greenland-Evidence from lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 4568.Google Scholar
Whitmore, J., Gajewski, K., Sawada, M., Williams, J.W., Minckley, T., Shuman, B., Bartlein, P.J., Webb III, T., Viau, A.E., Shafer, S., Anderson, P., and Brubaker, L.B. (2005). A North American modern pollen database for multi-scale paleoecological and paleoclimatic applications. Quaternary Science Reviews 24, 18281848.CrossRefGoogle Scholar
Wolfe, A.P., Fréchette, B., Richard, P.J.H., Miller, G.H., and Forman, S.L. (2000). Paleoecology of a > 90,000-year Lacustrine Sequence from Fog Lake, Baffin Island, Arctic Canada. Quaternary Science Reviews 19, 16771699.Google Scholar
Zabenskie, S. (2006). Post-Glacial Climatic Change on Boothia Peninsula, Nunavut, Canada. MSc Thesis,. University of Ottawa., 98 pp.Google Scholar