Distribution of SARS-CoV-2 RNA signal in a home with COVID-19 positive occupants

https://doi.org/10.1016/j.scitotenv.2021.146201Get rights and content
Under a Creative Commons license
open access

Highlights

  • SARS-CoV-2 RNA signal detectable in dust and on surfaces in a COVID-19 quarantine home.

  • SARS-CoV-2 RNA accumulates in home HVAC filter and cleaning removes the signal from surfaces.

  • Quantitative Filter Forensics provides estimate of indoor airborne concentrations.

Abstract

Although many COVID-19 patients isolate and recover at home, the dispersal of SARS-CoV-2 onto surfaces and dust within the home environment remains poorly understood. To investigate the distribution and persistence of SARS-CoV-2 in a home with COVID-19 positive occupants, samples were collected from a household with two confirmed COVID-19 cases (one adult and one child). Home surface swab and dust samples were collected two months after symptom onset (and one month after symptom resolution) in the household. The strength of the SARS-CoV-2 molecular signal in fomites varied as a function of sample location, surface material and cleaning practices. Notably, the SARS-CoV-2 RNA signal was detected at several locations throughout the household although cleaning appears to have attenuated the signal on many surfaces. Of the 24 surfaces sampled, 46% were SARS-CoV-2 positive at the time of sampling. The SARS-CoV-2 concentrations in dust recovered from floor and HVAC filter samples ranged from 104 to 105 N2 gene copies/g dust. While detection of viral RNA does not imply infectivity, this study confirms that the SARS-CoV-2 RNA signal can be detected at several locations within a COVID-19 isolation home and can persist after symptoms have resolved. In addition, the concentration of SARS-CoV-2 (normalized per unit mass of dust) recovered in home HVAC filters may prove useful for estimating SARS-CoV-2 airborne levels in homes. In this work, using the quantitative filter forensics methodology, we estimated an average integrated airborne SARS-CoV-2 concentration of 69 ± 43 copies/m3. This approach can be used to help building scientists and engineers develop best practices in homes with COVID-19 positive occupants.

Keywords

Quantitative filter forensics
Built environment
Dust
Virus
HVAC

Cited by (0)