Comparison of the protective antigen variabilities of prevalent Newcastle disease viruses in response to homologous/heterologous genotype vaccines

https://doi.org/10.1016/j.psj.2021.101267Get rights and content
Under a Creative Commons license
open access

ABSTRACT

The genotype VII Newcastle disease virus (NDV) vaccine has begun to replace the traditional genotype II NDV vaccine and is widely used in the commercial poultry of China. However, the effect of homologous and heterogeneous anti-NDV serum on the evolution of prevalent NDV is unknown. To understand the effect of genotype II and VII anti-NDV serum on the evolution of genotype VII NDV strains, ZJ1 (waterfowl origin) and CH/SD/2008/128 (ND128; chicken origin) were used for serial passage of 30 generations in DF-1 cells without anti-NDV serum or with genotype II and VII anti-NDV serum independently. The F and HN genes of the 2 viruses were amplified for the 10th, 20th, and 30th generations of each serial passage group and compared with their respective original viruses. We found that there was only one mutation at position 248 in the F gene of ZJ1 due to the serum pressure of genotype VII anti-NDV. Similarly, mutations at residue 527 of the F gene, and position 9 and 319 of the HN gene of ND128 were noted in both anti-NDV serum groups. The results show that the nonsynonymous (NS)-to-synonymous (S) ratio of the F gene of ZJ1 virus was 1.6, and for the HN gene, it was 2.5 in the anti-II serum group. In the anti-VII serum group, the NS/S ratio for the F gene was 2.1, and for the HN gene, it was 2.5. The NS/S ratio of the F gene of the ND128 virus was 0.8, and for the HN gene, it was 3 in the anti-II serum group. Furthermore, the NS/S ratio of the F gene was 0.8, and the HN gene was 2.3 in the anti-VII group. Taken together, our findings highlight that there was no significant difference in the variation of protective antigens in genotype VII NDV under the selection pressure of homologous and heterogeneous genotype NDV inactivated vaccines.

Key words

Newcastle disease virus
HN gene
F gene
immune selection
genetic variation

Cited by (0)

1

These authors contributed equally to this work.