Elsevier

Nuclear Physics A

Volume 872, Issue 1, December 2011, Pages 265-285
Nuclear Physics A

The surprisingly transparent sQGP at LHC

https://doi.org/10.1016/j.nuclphysa.2011.09.018Get rights and content

Abstract

We present parameter-free predictions of the nuclear modification factor, RAAπ(pT,s), of high pT pions produced in Pb + Pb collisions at sNN=2.76 and 5.5 ATeV based on the WHDG/DGLV (radiative + elastic + geometric fluctuation) jet energy loss model. The initial quark gluon plasma (QGP) density at LHC is constrained from a rigorous statistical analysis of PHENIX/RHIC π0 quenching data at sNN=0.2ATeV and the charged particle multiplicity at ALICE/LHC at 2.76 ATeV. Our perturbative QCD tomographic theory predicts significant differences between jet quenching at RHIC and LHC energies, which are qualitatively consistent with the pT-dependence and normalization—within the large systematic uncertainty—of the first charged hadron nuclear modification factor, RAAch, data measured by ALICE. However, our constrained prediction of the central to peripheral pion modification, Rcpπ(pT), for which large systematic uncertainties associated with unmeasured p + p reference data cancel, is found to be over-quenched relative to the charged hadron ALICE Rcpch data in the range 5<pT<20GeV/c. The discrepancy challenges the two most basic jet tomographic assumptions: (1) that the energy loss scales linearly with the initial local comoving QGP density, ρ0, and (2) that ρ0dNch(s,C)/dy is proportional to the observed global charged particle multiplicity per unit rapidity as a function of s and centrality class, C. Future LHC identified (h=π,K,p) hadron RAAh data (together with precise p + p, p + Pb, and Z boson and direct photon Pb + Pb control data) are needed to assess if the QGP produced at LHC is indeed less opaque to jets than predicted by constrained extrapolations from RHIC.

References (116)

  • K. Adcox

    Nucl. Phys. A

    (2005)
  • J. Adams

    Nucl. Phys. A

    (2005)
  • B.B. Back

    Nucl. Phys. A

    (2005)
  • I. Arsene

    Nucl. Phys. A

    (2005)
  • M. Gyulassy et al.

    Nucl. Phys. A

    (2005)
  • E.V. Shuryak

    Nucl. Phys. A

    (2005)
  • S.S. Gubser et al.

    Phys. Lett. B

    (1998)
  • S.S. Gubser

    Nucl. Phys. A

    (2009)
  • E. Braaten et al.

    Nucl. Phys. B

    (1990)
  • J.O. Andersen et al.

    Phys. Lett. B

    (2011)
  • M. Gyulassy et al.

    Phys. Lett. B

    (1990)
  • M. Gyulassy et al.

    Nucl. Phys. B

    (1994)
  • R. Baier et al.

    Nucl. Phys. B

    (1997)
  • M. Gyulassy et al.

    Nucl. Phys. B

    (2001)
  • U.A. Wiedemann

    Nucl. Phys. B

    (2000)
  • M. Djordjevic et al.

    Nucl. Phys. A

    (2004)
  • S. Wicks et al.

    Nucl. Phys. A

    (2007)
  • M.L. Miller et al.

    Ann. Rev. Nucl. Part. Sci.

    (2007)
  • J.P. Blaizot et al.

    Nucl. Phys. B

    (1987)
  • H. Weigert

    Prog. Part. Nucl. Phys.

    (2005)
  • J. Jalilian-Marian et al.

    Prog. Part. Nucl. Phys.

    (2006)
  • J.L. Albacete et al.

    Phys. Lett. B

    (2010)
  • P. Levai

    Nucl. Phys. A

    (2011)
  • Y. Hatta et al.

    Nucl. Phys. B

    (2011)
  • R. Wei

    Nucl. Phys. A

    (2009)
  • C. Marquet et al.

    Phys. Lett. B

    (2010)
  • W. Horowitz et al.

    Phys. Lett. B

    (2008)
  • A. Buzzatti et al.

    Nucl. Phys. A

    (2011)
  • A. Ficnar et al.

    Nucl. Phys. A

    (2011)
  • K.J. Eskola et al.

    Nucl. Phys. A

    (2011)
  • B.A. Kniehl et al.

    Nucl. Phys. B

    (2000)
  • K. Aamodt

    Phys. Lett. B

    (2011)
  • B. Abelev

    Phys. Rev. Lett.

    (2010)
  • K. Aamodt

    Phys. Rev. Lett.

    (2010)
  • K. Aamodt

    Phys. Rev. Lett.

    (2011)
  • G. Aad

    Phys. Rev. Lett.

    (2010)
  • S. Chatrchyan
  • B. Muller et al.

    Ann. Rev. Nucl. Part. Sci.

    (2006)
  • S. Borsanyi

    JHEP

    (2010)
  • O. Kaczmarek

    Phys. Rev. D

    (2011)
  • M. Luzum et al.

    Phys. Rev. C

    (2008)
  • B. Schenke et al.

    Phys. Rev. Lett.

    (2011)
  • S.S. Gubser et al.

    Phys. Rev. D

    (1996)
  • E. Witten

    Adv. Theor. Math. Phys.

    (1998)
  • P. Kovtun et al.

    Phys. Rev. Lett.

    (2005)
  • S.S. Gubser

    Phys. Rev. D

    (2006)
  • C.P. Herzog et al.

    JHEP

    (2006)
  • C.P. Herzog

    JHEP

    (2006)
  • S.S. Gubser et al.

    JHEP

    (2008)
  • P.M. Chesler et al.

    Phys. Rev. D

    (2009)
  • Cited by (107)

    • Constraining the equation of state with heavy quarks in the quasi-particle model of QCD matter

      2024, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
    • How does the Quark-Gluon Plasma know the collision energy?

      2018, Nuclear Physics B
      Citation Excerpt :

      This simple observation has many crucial ramifications, as was pointed out by Becattini et al. [4]; inter alia it implies that the densities and temperatures arising in peripheral collisions at sufficiently high impact parameter are arbitrarily lower than those in central collisions. It follows [5–8] that sufficiently peripheral collisions studied [9,10] at the LHC give rise to plasmas having the same energy density and temperature as plasmas produced in central collisions at the RHIC. This opens the way to an investigation of a fundamental question: does the plasma produced in peripheral collisions “know” about global parameters like the overall impact energy, or is it sensitive only to explicitly local parameters such as the energy density?

    • Energy Loss in Small Collision Systems

      2024, Proceedings of Science
    View all citing articles on Scopus
    View full text