Elsevier

Kidney International

Volume 92, Issue 5, November 2017, Pages 1194-1205
Kidney International

Basic Research
DNA methylation protects against cisplatin-induced kidney injury by regulating specific genes, including interferon regulatory factor 8

https://doi.org/10.1016/j.kint.2017.03.038Get rights and content
Under an Elsevier user license
open archive

DNA methylation is an epigenetic mechanism that regulates gene transcription without changing primary nucleotide sequences. In mammals, DNA methylation involves the covalent addition of a methyl group to the 5-carbon position of cytosine by DNA methyltransferases (DNMTs). The change of DNA methylation and its pathological role in acute kidney injury (AKI) remain largely unknown. Here, we analyzed genome-wide DNA methylation during cisplatin-induced AKI by reduced representation bisulfite sequencing. This technique identified 215 differentially methylated regions between the kidneys of control and cisplatin-treated animals. While most of the differentially methylated regions were in the intergenic, intronic, and coding DNA sequences, some were located in the promoter or promoter-regulatory regions of 15 protein-coding genes. To determine the pathological role of DNA methylation, we initially examined the effects of the DNA methylation inhibitor 5-aza-2'-deoxycytidine and showed it increased cisplatin-induced apoptosis in a rat kidney proximal tubular cell line. We further established a kidney proximal tubule-specific DNMT1 (PT-DNMT1) knockout mouse model, which showed more severe AKI during cisplatin treatment than wild-type mice. Finally, interferon regulatory factor 8 (Irf8), a pro-apoptotic factor, was identified as a hypomethylated gene in cisplatin-induced AKI, and this hypomethylation was associated with a marked induction of Irf8. In the rat kidney proximal tubular cells, the knockdown of Irf8 suppressed cisplatin-induced apoptosis, supporting a pro-death role of Irf8 in renal tubular cells. Thus, DNA methylation plays a protective role in cisplatin-induced AKI by regulating specific genes, such as Irf8.

Keywords

acute kidney injury
cisplatin
DNA methylation
DNA methyltransferases
nephrotoxicity

Cited by (0)