Computational neuroscience
Tensor decomposition of EEG signals: A brief review

https://doi.org/10.1016/j.jneumeth.2015.03.018Get rights and content
Under a Creative Commons license
open access

Highlights

  • EEG signals are naturally born with multi modes.

  • EEG signals can be represented by the high-order multi-way array, tensor.

  • Tensor of EEG can be exploited by tensor decomposition for multi-way analysis.

Abstract

Electroencephalography (EEG) is one fundamental tool for functional brain imaging. EEG signals tend to be represented by a vector or a matrix to facilitate data processing and analysis with generally understood methodologies like time-series analysis, spectral analysis and matrix decomposition. Indeed, EEG signals are often naturally born with more than two modes of time and space, and they can be denoted by a multi-way array called as tensor. This review summarizes the current progress of tensor decomposition of EEG signals with three aspects. The first is about the existing modes and tensors of EEG signals. Second, two fundamental tensor decomposition models, canonical polyadic decomposition (CPD, it is also called parallel factor analysis-PARAFAC) and Tucker decomposition, are introduced and compared. Moreover, the applications of the two models for EEG signals are addressed. Particularly, the determination of the number of components for each mode is discussed. Finally, the N-way partial least square and higher-order partial least square are described for a potential trend to process and analyze brain signals of two modalities simultaneously.

Keywords

Event-related potentials
EEG
Tensor decomposition
Canonical polyadic
Tucker
Brain
Signal

Cited by (0)