Elsevier

Journal of Archaeological Science

Volume 63, November 2015, Pages 104-114
Journal of Archaeological Science

Compound-specific amino acid isotopic proxies for detecting freshwater resource consumption

https://doi.org/10.1016/j.jas.2015.08.001Get rights and content
Under a Creative Commons license
open access

Highlights

  • Isotopic proxies are tested on archaeological remains from Zvejnieki, Latvia.

  • Dietary protein sources are identified using δ13C values of amino acids.

  • Amino acid δ13C values can elucidate palaeodiet in complex ecosystems.

Abstract

Of central importance to palaeodietary reconstruction is a clear understanding of relative contributions of different terrestrial (i.e., C3 vs. C4 plants) and aquatic (i.e., freshwater vs. marine) resources to human diet. There are, however, significant limitations associated with the ability to reconstruct palaeodiet using bulk collagen stable isotope compositions in regions where diverse dietary resources are available. Recent research has determined that carbon-isotope analysis of individual amino acids has considerable potential to elucidate dietary protein source where bulk isotopic compositions cannot. Using δ13CAA values for human and faunal remains from Zvejnieki, Latvia (8th – 3rd millennia BCE), we test several isotopic proxies focused on distinguishing freshwater protein consumption from both plant-derived and marine protein consumption. We determined that the Δ13CGly-Phe and Δ13CVal-Phe proxies can effectively discriminate between terrestrial and aquatic resource consumption, and the relationship between essential δ13CAA values and the Δ13CGly-Phe and Δ13CVal-Phe proxies can differentiate among the four protein consumption groups tested here. Compound-specific amino acid carbon-isotope dietary proxies thus enable an enhanced understanding of diet and resource exploitation in the past, and can elucidate complex dietary behaviour.

Keywords

Amino acids
Carbon isotopes
Nitrogen isotopes
Palaeodiet
Zvejnieki
Latvia

Cited by (0)