Effect of rotation on generalized thermo-viscoelastic Rayleigh–Lamb waves

https://doi.org/10.1016/j.ijsolstr.2006.11.016Get rights and content
Under an Elsevier user license
open archive

Abstract

The present paper is aimed at studying the effects of rotation on the thermoelastic interaction in an infinite Kelvin–Voigt-type viscoelastic, thermally conducting plate rotating about the normal to its faces with uniform angular velocity. This facilitates the decoupling of anti-plane/in-plane motion which is not possible, in general. The upper and lower surfaces of the plate are subjected to stress-free, thermally insulated or isothermal conditions. The formulation is applied according to three theories of the generalized thermoelasticity: Lord-Shulman with one relaxation time, Green–Lindsay with two relaxation times, as well as the coupled theory. Secular equations are derived for the plate in closed form isolated mathematical conditions for symmetric and skew-symmetric wave mode propagation in completely separate terms. In the absence of mechanical relaxations (Rotation and viscous effects), the results for generalized and couple theories of thermoelasticity were obtained as particular cases from the derived secular equations. In the absence of thermomechanical coupling, the analysis for a viscoelastic plate can be deduced from the present one. Finally the numerical solution is carried out for copper material. The function iteration numerical scheme is used to solve the complex secular equations, in order to obtain phase velocity and attenuation coefficients of propagating wave mode. The dispersion curves and attenuation coefficients profiles so obtained for symmetric and skew-symmetric wave modes are presented graphically to illustrate and compare the theoretical results in the presence and absence of rotation. The study may be useful in the construction and design of gyroscopes and rotation sensors as well as in the application in diverse fields.

Keywords

Rotation
Kelvin–Voigt
Viscothermoelasticity
Rayleigh–Lamb waves

Cited by (0)